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ABSTRACT: The seismic and liquefaction risk assessment implies introducing methods based on different 
hypotheses and dealing with different levels of uncertainty affecting the whole process from triggering to surfi-
cial manifestation. In this context, soft computing methods, like Bayesian Belief Networks (BBN) and artificial 
intelligence algorithms, provide the logic framework for cause-effect relationships and the statistical statement 
to manage uncertainties. Taking advantage of the significant amount of geotechnical data and post-earthquake 
surveys, an application of BBN versus the forecasting of liquefaction-induced ground damage is proposed con-
sidering three main shocks of the 2010 – 2011 Christchurch (New Zealand) Earthquakes Sequence. The BBN 
algorithms are firstly employed to identify significant variables and learn the relationships among them, then 
a direct and graphical link between input and target data is created. The quantitative validation of the built 
architecture enables to advantageously queried the net to predict the result of new datasets. 

1 INTRODUCTION 

The chain phenomena describing the liquefaction 
process involve numerous and complex relationships 
that rule the origin, propagation, surficial manifest-
ation, and induced structural and infrastructural 
damage. In the field of Earthquake Engineering, the 
cause-effect relationships starting from the probability 
of occurrence of a predefined intensity measure have 
been translated into the PEER convolutive integral 
(Cornell and Krawinkler, 2000), which develops the 
performance-based earthquake engineering approach. 
In recent years, the development of soft comput-

ing methods and the progress in artificial intelligence 
A.I. provide robust and reliable instruments capable 
of dealing with large amounts of data in a reasonable 
time, controlling the quality of results and quantify-
ing uncertainties. Artificial Neural Networks (ANNs) 
and Bayesian Belief Networks (BBNs) have been 
advantageously used in various engineering applica-
tions to identify the most significant variables, learn 
the relationships and dependencies among them, and 
link the input data to the target. After scrutinizing the 
new data collection campaigns following the 2012 
Emilia (Italy) Earthquake sequence, Paolella et al. 
(2019) developed artificial neural networks and 
Monte Carlo simulations to relate the Ishihara-based 
geotechnical model to the observed ground liquefac-
tion in the municipality of San Carlo. Ching and 
Phoon (2017) developed a method based on the 
sparse Bayesian learning (SBL) approach to analyze 

site-specific measurements like cone penetration test 
(CPT) data for probabilistic site characterization. 
A detailed study has been carried out by Tesfamar-
iam (2013) about liquefaction risk that calibrates four 
different BBN structures and defines a procedure to 
assess the liquefaction risk at the regional and single 
building levels. Tang et al. (2018) compare ANN 
technology and BNNs in describing the liquefaction 
ground severity demonstrating that the Bayesian 
model achieves better accuracy for each damage 
state. Taking advances from previous experiences 
and the considerable amount of geotechnical data, 
a BN model for liquefaction prediction is proposed 
in this work. The best structure is obtained after the 
processing of ≈9ʹ000 CPTs available from the New 
Zealand Geotechnical Database and testing each per-
formance against three main events of the 2010-2011 
Canterbury Earthquake Sequence. In a preliminary 
analysis, the back analysis enables the reconnaissance 
of the critical layer, i.e., the sandy stratum most 
likely to undergo liquefaction during the 2010-2011 
Christchurch earthquake sequence. The obtained 
results have shown that, if opportunely guided, the 
model can relate pre-defined representative variables 
to liquefaction ground evidence, the latter available 
from specific post-earthquake surveys. In 
a subsequent step, more detailed evaluations have 
been performed on such a critical layer, and a set of 
site-specific soil fragility functions is proposed. 
Uncertainties at different levels are accounted for 
through statistical and probabilistic terms, displaying 
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and controlling each variable. In conclusion, an alter-
native approach to large areas studies (Spacagna 
et al., 2021) and traditional liquefaction severity indi-
cators often evaluated deterministically is presented 
by developing a set of fragility functions. 

BAYESIAN BELIEF NETWORKS 

A Bayesian Network falls in the category of probabil-
istic graphical modeling (PGM) technique that is to 
compute uncertainties by using the probability con-
cept (Pearl, 1988). It is represented as a directed acyc-
lic graph (DAG) which contains a set of nodes and 
links, arches, relating parent nodes to the children 
ones. A directed acyclic graph evaluates the uncer-
tainty of an event occurring based on the conditional 
probability distribution of each random variable. 
A conditional probability table is used to represent 
this distribution of each variable in the network. 
To understand the meaning, it is necessary to 

introduce the inference algorithm that is based on 
the Bayes theorem and conditional independence as 
follows: 

It introduces joint probability, a measure of two 
events happening simultaneously i.e., P(A|B), and  the  
conditional probability of an event B, which is the 
probability that event B occurs given that an event 
A has already occurred. The Bayesian Networks satisfy 
the Local Markov Property, stating that a node is con-
ditionally independent of its non-descendants, given its 
parents. In the example of Figure 1, P(D|A, B) is equal 
to P(D|A) because D is independent of its non-
descendent, B. This property aids us in simplifying the 
Joint Distribution. The Local Markov Property leads us 
to the concept of a Markov Random Field, which is 
a random field around a variable that is said to follow 
Markov properties. 

Figure 1. Scheme of a sample Bayesian Network. 

Proven that the probability of a random variable 
depends on his parents, a Bayesian Network can be 
generalized as shown in Eqn. 2: 

2.1 Bayesian Networks for liquefaction hazard 

In general, the assessment of liquefaction hazard 
moves from subsequent steps, which translate the 
soil propensity to liquefy, the triggering analysis, and 
the liquefaction-induced ground deformation (Bird 
et al., 2005). Therefore, a BN model for liquefaction 
hazard requires introducing three types of nodes: 1) 
input nodes that include soil parameters (e.g., relative 
density, plasticity, fine contents), site conditions 
(groundwater depth, thickness and position homoge-
neous layers, distance from geological features like 
rivers/paleochannels) and seismic intensity measures 
(peak ground acceleration, Magnitude, duration, epi-
central distance); 2) state nodes which combine input 
into intermediate variables (i.e., the classification of 
soil susceptibility, the probability of triggering the 
phenomenon), and 3) output nodes describing the 
severity of liquefaction-induced ground observations. 
Hu et al. (2016) provided an example of a net that 

constructed a model for liquefaction potential evalu-
ation considering 12 factors. In this study, a revised 
approach is proposed, to link geotechnical and geo-
logical susceptibility to free field liquefaction ground 
evidence via the Arias Intensity, without evaluating 
traditional liquefaction severity indicators, i.e., simpli-
fying an intermediate step that unavoidably introduces 
noises. 
After selecting representative variables for lique-

faction, several net models are automatically gener-
ated and tested. With this regard, updating the net 
calculates the probability of having a particular com-
bination of input variables given the evidence, allow-
ing to determine the size, position, and strength 
characterization of the most likely layer experiencing 
liquefaction during the considered Earthquake 
sequence. On this layer, more detailed studies are car-
ried out. The development of a probability model for 
liquefaction occurrence considers different crust 
thickness, Hc, thick,  Hl, and average resistance, mean 
crr, of the potentially liquefiable layer. The maximum 
likelihood criterion is applied to fit the histograms 
data to lognormal functions (Baker, 2013). 

2.2 Management of uncertainty and Validation 

Among the advantages of the proposed method there, 
is an immediate and reliable graphic tool that displays 
input variables and their relationships. Uncertainties 
in data estimates and the validity of basic assumptions 
(like the three-layer hypothesis) can be managed at 
different levels. In addition, the probabilistic model 
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allows practitioners to make predictions for future 
situations with a certain level of confidence. Valid-
ation criteria are required to assess the reliability of 
the obtained results. The metrics used in this study 
are borrowed from the binary validation methods 
Lusted (1971), which introduces the concept of 
Receiver Operative Characteristic Curves obtained by 
combining specificity and sensitivity; the Area Under 
the Curve (AUC) is a global proxy of the estimate 
quality. In addition, the Kappa statistics method is 
used to assess the agreement between the actual and 
expected results (Witten and Frank, 2005). Kappa 
statistics is defined in Equation 3: Pa is the fraction of 
agreement and Pe is the fraction of random agreement 
used to correct for values. Pa is a summation of the 
diagonal values of the confusion matrix. 

3  THE CASE STUDY OF CHRISTCHURCH 
(NEW ZEALAND) 

3.1  The 2010-2011 Canterbury Earthquake 
Sequence 

The city of Christchurch (≈370ʹ000 inhabitants in 
2011), in the Canterbury Region of the South Island 
of New Zealand, was repeatedly struck by earth-
quakes during the 2010-2011 seismic sequence 
known as Christchurch Earthquake Sequence (C.E.S) 
The most noticeable were: the Mw 7.1 Darfield event 
of September 4th 2010, the (Mw 6.2) Christchurch 
Earthquake of February 22nd 2011, resulting in 185 
fatalities and diffuse devastation to dwellings and 
infrastructures and the Mw 6.0 June 13th 2011. Lique-
faction played a significant role in causing the 
removal of 900ʹ000 tons of liquefied soil, the demoli-
tion of 8ʹ000 buildings (Cubrinovski, 2013; Tonkin & 
Taylor, 2013), and an economic loss of NZ$30 billion 
only on the residential sector (NZ Parliament). 

3.2  Creation of databases and variables 
management 

Taking advantage of the significant amount of geo-
technical data, a general framework to develop BBN 
is developed. The strategy to reach such goals 
include: i) database construction and preliminary 
processing of CPT data; ii) sensitivity and correl-
ation analyses; iii) automated training of different 
nets and validation test. In addition, a probabilistic 
model is derived from the output of the structure 
showing the best performance. 
The database creation includes the collection and 

homogenization into a standardized format of many 
CPTs from the New Zealand Geotechnical Database. 
Out of 30ʹ000 stratigraphies available on the whole 

Christchurch area, around 9ʹ000 CPT profiles with 
a depth greater than 10m have been considered. In 
a preliminary phase, the Equivalent Soil Profile (ESP) 
method defined by Millen et al. (2020) is applied to 
determine the liquefaction susceptibility. This criterion 
converts a CPT profile into a three-layered equivalent 
one, defined by Hc, Hl and crr of the potentially lique-
fiable layer, with an error term used to confirm the 
consistency with the hypothesis of three-layered pro-
file. The following analysis include three variables 
(i.e., crust thickness, liquefiable thickness, and resist-
ance), which define 22 homogeneous soil classes for 
liquefaction susceptibility taken from Millen et al. 
(2020) criterion. The groundwater table is not expli-
citly accounted since it is already considered in evalu-
ating the crust thickness. In addition, the ESP normed 
error representing a check factor for the consistency 
with the 3-layered profile hypothesis is considered. On 
the other hand, the distance from riverbeds is assumed 
as a proxy for geological susceptibility. Seismic hazard 
is characterized for three earthquakes among the main 
events of the 2010-2011 C.E.S., i.e., the Sept 2010 
Mw7.1 Darfield earthquake, the Mw6.2 Feb 2011, and 
the Mw6.0 Jun 2011 Christchurch Earthquakes. For 
each of them, the Arias Intensity is evaluated elaborat-
ing the records of Central Christchurch strong motion 
stations. These scenarios are modeled through the fault 
distance and the Arias Intensity selected in place of the 
pair PGA-magnitude since it embeds the intensity and 
duration of the shaking. On the other hand, the lique-
faction ground observation is classified as “YES” and 
“NO”. The subsequent diagnostic inference showing 
the correlation between each variable and the observed 
liquefaction is reported in Figure 2. Just as an example 
of traditional severity indices, the van Ballegooy et al. 
(2014) Liquefaction Severity Number (LSN) which 
combines triggering with a hyperbolic weight function, 
is presented in Figure 2. 

Figure 2. Sensitivity analysis of selected variables versus 
liquefaction ground observations: a) non-liquefiable crust 
thickness (m); b) thick of potentially liquefiable layer (m); 
c) mean crr; d) normed error (Millen er al., 2020); e) dis-
tance of investigated profile from riverbeds (m); e) epicen-
tral distance (km); g) Arias (1970) Intensity (cm/s); h) LSN 
(van Ballegooy et al., 2014). 
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Although each variable of Millen et al. (2020) 3.3 Training and validation of Bayesian Belief 
method seems to correlate to liquefaction poorly, if 
considered alone, from Figure 2, it is intuitive to 
observe that liquefaction occurrence increases with 
proportionally with the seismic shaking (see Arias 
Intensity) and close to riverbeds. The herein ana-
lyzed seismic scenarios remark that the relationship 
between seismic moment magnitude Mw and 
observed liquefaction is here strongly affected by the 
epicentral distance that made the Mw6.0 (located at 
approximately 5km from the City Center) and 
Mw6.2 February event, whose epicenter was around 
6-7km South of Christchurch, more severe than the 
Mw7.1 Darfield event (epicenter 45km West of 
Christchurch). 
In the following analysis, the existing depend-

encies among input variables are evaluated by cal-
culating the Pearson coefficient; the resulting 
correlation matrix is plotted in Figure 3, whose 
coefficient font size is proportional to the correl-
ation found. The massive amount of raw data, the 
lack of a predefined standard in the  format, in con-
junction with a certain level of subjectivity con-
nected to post-earthquake rapid surveys, results in 
a non-negligible noise affecting the whole dataset. 
Therefore, Figure 3 shows a partial moderate/ 
strong correlation between parameters introduced 
to quantify liquefaction susceptibility, which can 
be merged into one variable (i.e., the ESP soil 
class) and between Arias Intensity and liquefaction 
severity indicators like LSN. However, to reduce 
the intermediate steps resulting in error, in the fol-
lowing process Arias Intensity is directly assumed 
as Engineering Demand Parameter for a given soil 
configuration, providing an alternative approach to 
traditional liquefaction severity indicators. In add-
ition, the preliminary classification of variables 
applied by Millen et al. (2020) has been increased 
to investigate other geometric configurations 
better. 

Figure 3. Correlation matrix of the considered variables 
for liquefaction. 

Networks for liquefaction 

To generate a BBN for liquefaction assessment, the 
local score metrics are considered for structure 
learning. Following the typical steps in assessing 
the liquefaction-induced permanent ground deform-
ation, seven structures of Bayesian Belief Networks 
are trained and tested comparing the performance 
versus the liquefaction prediction capability for the 
Sept 2010 Mw7.1 Darfield earthquake, the Mw6.2 
Feb 2011, and the Mw6.0 Jun 2011 Christchurch 
Earthquakes. Bearing in mind the results displayed 
in Figure 3, these networks architecture is built in 
the “Genie Academy” environment (Genie, 2020 
https://www.bayesfusion.com/) by introducing dif-
ferent search algorithms. PC (Spirtes et al., 1993) 
uses independences observed in data (established 
employing classical independence tests) to infer the 
structure that has generated them and is the most 
adequate for continuous datasets; Naive Bayes and 
its improved version, i.e., Tree Augmented Naïve 
Bayes (TAN) and Augmented Naïve Bayes (ANB), 
Bayesian search (BS), and Greedy thick thinning 
(GTT), respectively defined by Cooper and Herko-
vits (1992), and Cheng et al. (1997). Additionally, 
a background knowledge is provided to the PC 
algorithm to build an expert-guided network based 
on engineering judgment. The expert-guided model 
is displayed in Figure 4. The net is based on the PC 
algorithm customized on the phenomenon know-
ledge. In particular, the combination of Hc, Hl, and 
crr provides the equivalent soil profile class by 
introducing the normed error as the first control 
factor. The geological susceptibility is separately 
considered; therefore, the distance from the riv-
erbed is considered and modeled as an independent 
variable. On the right side of the net, the epicentral 
distance and Arias Intensity can be observed; the 
net learned both a dependency among each other 
and liquefaction ground evidence. Conditional and 
prior probabilities are specified and, in turn, 
employed to perform belief updating and extract 
posterior beliefs. The quality measure can be 
judged with several criteria like the Bayesian 
approach or minimum description length (Bouck-
aert et al., 2011). The score of the whole network 
can be decomposed as the sum (or product) of indi-
vidual node scores in a way that enables local scor-
ing and searching methods. The performance of 
each algorithm is summarized in Table 1 that shows 
the result of the 5-fold cross-validation test, which 
splits the whole dataset into 5 panels and estimates 
how the model is expected to perform when used to 
make predictions on data not used during the train-
ing of the model. The AUC, in conjunction with the 
K statistics, is used to rank the best learning struc-
ture. Although a perfect match exists when 
K statistics is equal to 1.0, realistically, for a site 
investigation on a regional scale, a K=0.5 match is 
more appropriate (Demshar, 2020). 
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Table 1. Summary of validation results for the above 
defined Bayesian networks. 

SCORE 

BBN AUC K-stat. OSR PRECISION 

PC 0.81 0.442 0.72 0.70 
Naïve Bayes 0.79 0.431 0.72 0.72 
ANB 0.77 0.458 0.73 0.71 
TAN 0.82 0.447 0.72 0.71 
BS 0.81 0.421 0.72 0.56 
GTT 0.81 0.460 0.73 0.69 
Expert-guided* 0.81 0.461 0.73 0.70 

*  Ranked as the best structure because of the highest 
K-statistics and the physical accounting of cause-effect 
relationships governing the liquefaction phenomenon. 

Once the general performance is evaluated 
through the AUC, the features of the Christchurch 
critical layer have been searched by setting the evi-
dence of liquefaction and discarding those profiles 
not ascribable to the three-layered model (Paolella 
et al., 2020). It is found that, for the considered seis-
mic scenarios, the critical layer for liquefaction 
is shallow (Hc < 3m in 60% of cases), mid-size to 
large (Hl > 3m in 81% of cases) and can be modeled 
with a crr < 0.30 (93%of cases) (Figure 4). 

Figure 4. Back analysis of Christchurch earthquake scen-
arios with the selected expert-guided net. 

3.4  A probabilistic model for liquefaction 
triggering analysis 

The automated processing of such a number of CPT 
data and the availability of post-event damage surveys 
provides a unique chance to test the performance of 
current criteria and develop new models. About the 
latter task, the probability of observing liquefaction 
given the critical layer has been better investigated by 
splitting the liquefiable thickness range into three clas-
ses, i.e. 3 < Hl ≤ 5m, 5 <Hl  ≤ 10m, 10 <Hl ≤ 15m 

curves have been derived on these configurations. 
A fragility curve like the one shown in Equation 4 
evaluates the probability of observing liquefaction 
given an intensity measure (IM) idealized by a typical 
lognormal distribution: 

where � denotes the Gaussian cumulative distri-
bution function, IMm is the median distribution and β 
is the logarithmic standard deviation. Even though 
that minor literature exists about the modeling of 
soil liquefaction vulnerability with this approach 
(Geyin and Maurer, 2020), fragility curves are gener-
ally adopted in procedures to assess seismic and 
liquefaction risk on buildings (Fotopoulou et al., 
2018), road and embankments (Syner-G, 2013) and 
pipelines (Liu et al., 2015; Baris et al., 2020). Fragil-
ity functions are developed as an extension of deter-
ministic models, allowing practitioners to make 
previsions linked to probabilistic seismic hazard ana-
lyses. After the experience of Baker (2013) in struc-
tural modelling, the maximum likelihood method is 
here applied to reach the appropriate data fitting. 
Assuming that the number of liquefaction/no lique-
faction observations from each experiment is inde-
pendent of observations from other experiments, the 
probability of observing zj liquefaction occurrence in 
nj motions having IM = xj is provided by the bino-
mial distribution (Equation 5). 

where pj is the probability that a ground motion 
with IM = xj will trigger liquefaction. The maximum 
likelihood is thus implemented to find the fragility 
function capable of predicting pj with the highest 
probability of fitting experimental data. When ana-
lysis data are obtained at multiple IM levels, we take 
the product of the binomial probabilities (from Equa-
tion 5) at each IM level to obtain the likelihood for 
the entire data set. 

where m is the number of IM levels and Π is 
a product over all levels. 
The pairs of IMm and β obtained for each soil con-

figuration by maximizing Equation 6 are reported in 
Table 2; in addition, the maximum observed value of 

1039 



arias intensity is indicated, meaning that discretion 
should be used in using the obtained fragility functions 
out from the suggested range. Figure 5 displays both 
the suit of functions showed in Table 2 and the inter-
polated experimental points; a graphical comparison 
among each other is presented in Figure 5d. It reflects 
the positive correlation between thick of liquefiable 
layer Hl and liquefaction occurrence for a given 
shaking. 

Figure 5. Probability of observing liquefaction manifest-
ations given the AI, for each profile configuration: a) 
3 < Hl  ≤ 5m; b)  5 < Hl  ≤ 10m; c)  10 < Hl ≤ 15m; d) general 
comparison. 

Table 2. Summary of fragility function parameters. 

H1(m) IMm β Arias Intensity (cm/s) range 

3-5 142.3 1.03 < 350 
5-10 123.8 1.02 < 350 
10-15 102.6 1.06 < 350 

4 CONCLUSIONS 

After processing ≈30ʹ000 CPTs, seven structures of 
Bayesian Networks are tested against the liquefaction 
ground evidence induced by three main shocks of the 
2010 – 2011 Christchurch Earthquake Sequence. The 
validation criteria ranked the “expert-guided” Net as 
the best architecture. It accounts for the cause-effect 
relationships ruling the phenomenon introducing new 
variables that better describe the geological/geotech-
nical susceptibility (e.g., epicentral and riverbeds dis-
tances) not considered by traditional liquefaction 
severity indicators. The robustness of the proposed 
method herein is quantified by an AUC equal to 
0.81, i.e., ≈15% higher than traditional indices, which 
cannot manage all the uncertainties connected with 

the randomness of seismic source, spatial variability, 
and error propagation (Paolella et al., 2020). The 
Bayesian Network-based back analysis located the 
Christchurch critical sandy layer at a relatively small 
depth (Hc < 3m), and a very low relative density is 
found on it (crr <0.3). The following analysis defined 
a set of soil fragility curves that couple the liquefac-
tion susceptibility of such a critical layer to the seis-
micity of the area via the Arias Intensity measure. 
Their applicability should respect the Arias Intensity 
range reported in Table 2, requiring additional ana-
lyses and judgment if this value is exceeded. 
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