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Abstract— In this paper, we propose a distributed framework
for large scale networks to attain control strategies requiring
k-hop interactions. This research is motivated by the observation
that in many practical applications and operational domains in-
volving large-scale networks, such as environmental monitoring
or traffic load balancing, agents may be required to collect only
information concerning other agents located sufficiently close to
them, that is agents topologically at most k-hop away. In this set-
ting, distributed observers available at the state of art, which typ-
ically estimates the full network state, may be inadequate due
to scalability issues. Differently, we propose a distributed finite-
time observer which allows each agent to estimate the state of its
k-hop neighbors by interacting only with the agents belonging to
its 1-hop neighborhood. Furthermore, we demonstrate that for
feedback control strategies based on k-hop neighborhood infor-
mation, which are Input-to-State stable, the proposed distributed
finite-time observer can be effectively used to design stable large-
scale networked control strategies. Numerical results are pro-
vided to corroborate the theoretical findings.

I. INTRODUCTION

Large-scale Networked Systems (LSNSs) represent an effec-
tive modeling for a variety of application settings ranging from
power grids to communication networks [1]–[6]. Research in
the field of modeling, analysis and control of LSNSs has been
an attractive field for the control community for a long time [7]–
[9]. Over the years, several definitions of LSNSs have been
proposed where differences are mostly related to the control
organizational structures, moving from hierarchical control
structures to fully decentralized control structures [10]–[12].

Nowadays, inspired by the technological advances of, for ex-
amples, Microelectromechanical systems (MEMS), the trend is
towards the development of fully distributed locally interacting
systems. More specifically, we are interested in an application
setting where each node (agent) is characterized by limited
sensing and communication capabilities, and interactions are
limited to pairs of agents that are within the mutual range
of communication. As a matter of fact, given the distributed
nature of the system, the exchange of information becomes
crucial to realize almost any collaborative objective, ranging
from agents coordination, to data fusion and signal tracking.
The underlying idea is to make up for the lack of global knowl-
edge by means of pairwise interactions in such a way that the
global information can be either retrieved or compensated by
means of local information exchange. This working paradigm
has driven the research activities of the last two decades in the
distributed control community [13]–[16].
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This work is motivated by the observation that in many
practical applications and operational domains involving large-
scale networks, such as environmental monitoring or traffic
load balancing, due to the locality of the phenomena, the adop-
tion of a suitable local strategy by each agent may require
to collect only information concerning other agents located
sufficiently close to them, that is agents topologically at most
k-hop away. In other words, control strategies to attain collab-
orative behavior may reasonably be developed by having each
agent relying only on a partial knowledge of the overall state
of the network. In such a context, typical approaches to esti-
mate the state of a system, such as distributed observers, may
perform poorly as they were originally designed to estimate
the state of the whole network [17], while each agent may only
be interested in retrieving a portion of such state related to the
agents that are at most k-hop away from it. For this reason, we
developed a distributed finite-time observer which allows each
agent to estimate the state of its k-hop neighbors by interact-
ing only with the agents belonging to its 1-hop neighborhood.
Compared to distributed state observers available at the state
of the art, this significantly reduces the computational burden
when applied to large-scale networks, that is networks where
the number of agents is considerably large.

Furthermore, we demonstrate that for feedback control
strategies requiring k-hop neighborhood information, which
are Input-to-State stable, the finite-time convergence property
of the proposed distributed observer allows to safely close the
control loop around the estimated k-hop state information. In-
deed, this allows to decouple the design of the control law from
the stability analysis of the multi-agent dynamics when clos-
ing the loop through the state observer. Thus demonstrating
that the proposed distributed finite-time observer can be effec-
tively used to attain stable collaborative large-scale networked
systems.

To summarize, in this paper the following contributions are
made:

• we provide a very general framework to design collab-
orative control strategies on large scale systems by ab-
stracting away from the locality of the interactions. To
this aim, we propose a distributed finite-time observer
which allows each agent to estimate the state of its k-hop
neighbors by interacting only with the agents belonging
to its 1-hop neighborhood;

• we demonstrate that if the closed-loop dynamics of the
multi-agent system with a given feedback controller is
Input-to-State Stable (ISS) under the assumption of global
knowledge of the k-hop neighbors state, then the system
remains stable also while using the devised observer in
the case such k-hop knowledge is not available; thus high-
lighting a sort of decoupling principle between control
design and observer design.

The rest of the paper is organized as follows. In Section II



related works are discussed. In Section III some required math-
ematical background is provided, while Section IV describes
the problem setting. The proposed k-hop Graph-Based State
Observer is described in Section V, and Section VI carries out
a closed-loop analysis in the case the estimated state is used
within a feedback control strategy. In Section VII simulations
results are described. Finally, in Section VIII conclusions are
drawn and future work is discussed.

II. RELATED WORK

The problem of designing distributed observers for large-
scale networks of interconnected systems represents a hot re-
search topic with solutions differing, for example, in terms of
agent dynamics, communication constraints, size of the net-
work and convergence properties of the estimated information.
Such problem has been studied since the 70s [18]–[20]. In
particular, in [18] the authors suggest to decompose a large
linear system into a number of interconnected subsystems with
decentralized (scalar) inputs or outputs. The underlying idea is
that, by means of such a decomposition, classical techniques
can be used to either stabilize or observe the subsystems. The
problem of designing a decentralized observation scheme with
a specified convergence rate is addressed in [19]. In this work,
the large-scale system is described as an interconnection of
several reduced-order subsystems. Work [20] proposes an al-
gorithm for the design of decentralized observation schemes
in large-scale interconnected systems which is based on the
notion of block diagonal dominance in matrices describing the
system dynamics. In particular, the authors demonstrate how
the observer gains can be tailored systematically to the existing
interconnection pattern within the overall system.

In addition to these seminal works, several recent results
have appeared concerning distributed state-estimation and con-
trol for general networked systems based on inter-agent com-
munication and consensus theory [21]–[25].
In this perspective, network decomposition in sub-systems,
each one with its own local controller, is introduced in [21]. In
this work, information exchange may or may not be allowed
depending on the network constraints. In [23] a consensus-
based decentralized observer for a team of agents described by
a discrete-time linear dynamics is proposed. Locally available
information and the knowledge of the plant model are exploited
to estimate the overall plant state. Similarly, in [24] the authors
propose an asymptotic observers where each agent exploits
local state measurements and the state communicated by its
1-hop neighbors with the objective of estimating the global
state of the network. Finally, the problem of distributed out-
put regulation for heterogeneous nonlinear networked agents
is addressed in [25], where local measurement of the agent
output and the exchange of some local information among dif-
ferent observers are used to asymptotically estimate some state
variables. Notably, while these approaches were originally de-
veloped for networked systems where the per-agent controller
would depend on the full network state, their applicability to
the context of large-scale networks may be debatable, due to
their scalability issue with respect to the network dimensional-
ity and the fact that a full knowledge of the network state may
even not be required.

To the best of our knowledge, solutions specifically devised
for large-scale systems are sparse. Recent results include [26]
and [27] where distributed Kalman filtering techniques are

used, and [28] where both linear and nonlinear interconnected
systems are considered.

Focusing on recent results concerning large scale-network,
work in [29] faces the problem of stabilizing networked control
systems with sparse observer-controller networks. In particular,
first the authors derive a set of stability conditions based on the
Lyapunov direct methods, then they exploit these conditions to
derive a low-complexity algorithm for the design of a sparse
observer for linear time-invariant (LTI) networked control sys-
tems with arbitrary topology.
A distributed observer to estimate the states of a large scale
network of semi-linear systems interconnected by a positive
time varying coupling strength is presented in [25]. Briefly, the
authors design a network of local observers which requires
only 1-hop local node level information and exchanges their
local state estimates with their neighboring observers. The
underlying idea of this approach is to minimize the number
of measurements from the network to reduce the sensor re-
quirements. In [30], the authors investigate the design of a
distributed guaranteed-cost controller based on information de-
rived from a local distributed observer for linear systems with
nonlinear interconnections. First the dynamics of the estima-
tion error is written as a class of linear parameter varying (LPV)
systems by resorting to the differential mean value theorem;
then, necessary and sufficient conditions for the existence of
distributed observer-based guaranteed cost controllers are syn-
thesized based on a linear matrix inequality (LMI) approach.

One important performance index of distributed protocols
is the convergence rate. Most of the aforementioned works
guarantee asymptotic convergence which means that the es-
timated information approaches the true value only as time
approaches to infinity. However, finite-time convergence is
a desirable property when fast convergence and precision is
required. In this regard, finite-time observers have been pro-
posed in recent years. For example, the work in [31] proposed
a solution to the finite-time consensus problem. The adopted
protocol is based on a distributed observer with finite settling
theoretically estimated. In [32], observer-based distributed con-
trollers are proposed for both directed and undirected networks
with the aim of achieving coordinated tracking. A finite-time
distributed observer is designed to the scope and it is shown
to work when the relative state or relative output of neighbour
agents is available. A robust finite-time discontinuous observer
is designed in [33] with the purpose of solving a multi-agent
leader-follower problem. In [34], the authors propose a nonlin-
ear distributed observer with finite-time convergence property
for linear time-invariant (LTI) network dynamics in large-scale
system.

An observer-based control scheme for networked system
is proposed in [17]. The present work significantly differs
from [17] where agents were described by a simple linear first
order dynamics, the cooperative task was described by a linear-
in-the-state function which depends on the whole state of the
network, the proof of asymptotic convergence of the controller-
observer schema was carried out by considering all together
the agent dynamics, the observer structure and the very specific
control law and, finally, the approach was not meant to scale
with the number of agents.
Moreover, a preliminary version of this work can be found
in [35] from which the present work differs for the more rigor-
ous analysis, the more general system model considered, the
ISS-based closed loop analysis.



III. PRELIMINARIES

A. Network Modeling

Let us consider a multi-agent system composed of n in-
teracting agents. Let the information exchange among the
agents be described by an undirected graph G = {V, E}, where
V = {1, . . . , n} is the set of agents and E = {(i, j)} is the
set of pairwise interactions among agents i and j.

Let us define a path between agents i and j as the set of
edges through which an agent j can be reached by an agent
i; in the following we will denote as k-hop path between
agents i and j, a path which involves k edges from agent i
to reach agent j. Note that since the graph is undirected, the
indexed i and j can be arbitrarily switched. Let N k

i denote
the k-hop neighborhood of an agent i, that is the set of agents
j for which there exists a p-hop path from agent j to i with
p ≤ k. Let us now introduce the augmented k-hop neighbor-
hood N̄ k

i as the k-hop neighborhood of agent i including the
agent i itself, that is N̄ k

i = N k
i ∪ {i}, with cardinality ηi

(ηi = |N̄ k
i |). Moreover, let as denote the elements of this set

as Vi = N̄ k
i = {n1i , . . . , n

ηi
i }, where nji is the global index

of the j-th neighbour of agent i . Let us define the adjacency
matrix W ∈ IRn×n as the matrix where

W = {wij} : wii = 0, wij =

{
1 if (j, i) ∈ E
0 otherwise

for which an element wij is different from zero if node
j can send information to node i. The degree matrix
D = diag{d1, . . . , dn} is defined as the diagonal matrix
where di = |N 1

i |; while the Laplacian matrix associated to the
graph is defined as L = D −W . As far as the Laplacian ma-
trix is concerned, zero is always an eigenvalue with 1n ∈ IRn

as the corresponding right eigenvector, i.e., L1n = 0n, with 1n
(0n) the n-dimensional column vector with all elements equal
to 1 (0). Hence, rank(L) ≤ n − 1 where the equality holds
when the graph is connected [36].

Finally, let us denote with ⊗ the Kronecker product, and
with Q � 0 (Q ≺ 0) a positive (negative) definite matrix. In
addition, given a positive definite matrix Q, the symbol σ(Q)
denotes the spectrum of its matrix argument, while λj(Q),
λmin(Q) and λmax(Q) are the generic j th, the minimum and
maximum eigenvalues of Q.

B. Nonsmooth Analysis

We now briefly review the Filipov solution concept for dif-
ferential equations with discontinuous right-hand side, the
nonsmooth analysis of Clarke’s Generalized Gradient, and the
chain-rule for differentiating regular functions along Filipov
solution trajectories. The reader is referred to [37]–[39] and
references therein for a comprehensive overview of the topic.

Consider the following differential equation

ẋ = f(x) (1)

with f(·) : Rn → Rn a measurable and essentially locally
bounded function. First, we need to clarify what it means to be
a solution of this equation.

Definition 1 (Filipov Solution). A vector function x(·) is
called solution of (1) on a time interval [t0, ti] if x(·) is abso-
lutely continuous on [t0, ti] and for almost all t ∈ [t0, ti]

ẋ ∈ K[f ](x) (2)

where K[f ](x) : Rn → 2R
n

is a set-valued map defined as

K[f ](x) ≡
⋂
δ>0

⋂
µ{H}=0

co{f(B(x, δ) \H)} (3)

where
⋂
µ{H}=0 denotes the intersection over all sets H of

Lebesgue measure zero, B(x, δ) denotes the ball of radius δ
centered at x, co the convex closure and 2R

n

the set of sub-
sets of Rn. From now on, it will be assumed, without loss of
generality, t0 = 0.

Let us now review the concept of range, norm and bound-
edness for the set-valued map K[f ](x). Further details can be
found in [40], [41]. In particular, let us denote with R(K[f ])
the range of K[f ] defined as

R(K[f ]) :=
⋃
x∈Rn

K[f ](x) (4)

and with ‖K[f ]‖ the norm of the set-valued map K[f ] defined
as

‖K[f ]‖ = sup
y∈R(K[f ])

‖y‖ (5)

It follows that a set-valued map K[f ] is called bounded if its
range R(K[f ]) is bounded, that is if ‖K[f ]‖ <∞.

Briefly, the idea of the Filipov’s solution is that the tangent
vector to a solution, where it exists, must lie in the convex clo-
sure of the values of the vector field in progressively smaller
neighborhoods around the solution point. A very important
aspect of this definition is given by the possibility of discard-
ing sets of measure zero. Indeed, this technical detail allows
solutions to be defined even at points where the vector field
itself is not defined.

We now introduce the concept of Clarke’s Generalized Gra-
dient, an essential tool in the machinery of nonsmooth analysis.

Definition 2 (Clarke’s Generalized Gradient). Consider a lo-
cally Lipschitz function V : Rn → R. Then the generalized
gradient at x is defined as

∂V (x) = co
{

lim
i→∞

∇V (xi) |xi → x, xi /∈ ΩV
}

(6)

where ΩV is the set of measure zeros where the gradient of V
is not defined.

We now review the chain rule which allows to differenti-
ate Lipschitz regular functions along the Filipov’s solution
trajectories.

Theorem 1 (Chain Rule [38]). Let x(·) be a Filipov solution
to (1) on an interval containing t and V : Rn → R be a
Lipschitz and, in addition, regular function. Then V (x) is ab-
solutely continuous, (d/dt)V (x(t)) exists almost everywhere
and

d

dt
V (x(t)) ∈a.e. V̊ (x) (7)

where the generalized time derivative V̊ (x) is defined as

V̊ (x) :=
⋂

ξ∈∂V (x(t))

ξTK[f ](x) (8)

So far, we have introduced the essential tools constituting
the machinery of the nonsmooth analysis, where the right-hand
side of differential equations may be discontinuous and the
Lyapunov function may be non-differentiable. Interestingly,



this machinery can be simplified under the assumption of con-
tinuous differentiability of the Lyapunov function.

First, let us notice that for a continuously differentiable func-
tion the generalized derivative becomes a singleton containing
the actual gradient of the function, that is

Corollary 1 ([37]). Let V : Rn → R be a continuously
differentiable function. Then

∂V (x) = {∇V (x)} (9)

Then, by exploiting this information we can provide a sim-
plified version of the chain rule stated in Theorem 1 as:

Theorem 2 (Simplified Chain Rule). Let x(·) be a Filipov
solution to (1) on an interval containing t and V : Rn → R be
a continuously differentiable function. Then V (x) is absolutely
continuous, (d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. V̊ (x) (10)

where the generalized time derivative V̊ (x) is defined as

V̊ (x) := (∇V (x))
T
K[f ](x) (11)

Finally, we review a calculus for computing the Filipov’s
differential inclusions, originally developed in [37] (and further
extended in [39]).

Theorem 3 (Calculus for K [37]). The map K : Rn → 2R
n

has the following properties
1) Assume that f : Rn → Rn is locally bounded. Then
∃Hf ⊂ Rn, µ{Hf} = 0, such that ∀H ∈ Rn,
µ{H} = 0,

K[f ](x) = co
{

lim
i→∞

f(xi) |xi → x, xi /∈ Hf ∪H
}

(12)
2) Assume that f, g : Rn → Rn are locally bounded; then

K[f + g](x) ⊂ K[f ](x) +K[g](x) (13)

3) Assume that fi : Rn → Rni , j ∈ {1, . . . , N}, are
locally bounded; then

K
[
×N

j=1fj(x)
]
⊂×N

j=1K[fj ](x) (14)

where the cartesian product notation and the column
vector notation are used interchangeably.

4) Let g : Rm → Rp×n (i.e., matrix valued) be continuous
and f : Rm → Rn be locally bounded; then

K[g f ](x) = g(x)K[f ](x) (15)

where g f , g(x) f(x) ∈ Rp.
5) Let f : Rn → Rn be continuous; then

K[f ](x) = {f(x)} (16)

6) Let f : Rn → Rn be Lipschitz; then

K[∇f ](x) = ∂f(x) (17)

IV. PROBLEM SETTING

Consider a dynamical system composed of n interacting
agents, where each agent i has a non-linear dynamics of the
form

ẋi = f(xi) +Axi + g(ui) (18)

where A ∈ Rd×d, f : IRd → IRd is a Lipschitz nonlinear
functions with Lipschitz constant lf , and g : IRp → IRd is a
measurable and essentially locally bounded function under
Assumption 1.

Assumption 1. One of the following conditions must hold:
a) the function g(·) is bounded (with a known upper-

bound);
b) the derivative K[ġ](·) is bounded (with a known upper-

bound).

Assumption 2. We assume that agent i is aware of its k-hop
neighborhood N k

i .

Note that, this assumption on the awareness of the k-hop
neighborhood is reasonable, as the design of distributed neigh-
borhood discovery algorithms is a well-established research
topic in the sensor network community (see [42], [43] and ref-
erence therein). Furthermore, we point out that the knowledge
of the k-hop neighborhood does not necessarily imply also
the knowledge of the network topology of the k-hop graph,
which is yet another well-established research topic in sensor
networks [44], [45].

Let us denote with xi the vector containing the actual state
xj of the agents belonging to the augmented k-hop neighbor-
hood N̄ k

i of an agent i, that is

xi = P̄i x =
[
xn1

i

T , . . . , xnηii
T
]T

(19)

with ηi =
∣∣N̄ k

i

∣∣ and matrix Pi is a ηi × n binary matrix with:

Pi =
[
en1

i
en2

i
. . . enηii

]T
(20)

where enji is the canonical vector with all zeros but element nji
which is 1. Finally, let us define the matrix P̄i as

P̄i = Pi ⊗ Id (21)

that is a selection matrix obtained according to the given graph
structure G. Note that P̄

T

i P̄i x = P̄
T

i x
i, that is it returns a

vector which has the same size as the vector x but it contains
only the components of the agents j ∈ N̄ k

i by preserving the
original index ordering. The state estimate x̂i of an agent i is
defined as

x̂i =
[
x̂Ti,n1

i
, . . . , x̂T

i,n
ηi
i

]T
(22)

where x̂i,npi is the estimate of the state xnpi carried out by the
agent i. Furthermore, let us define the state estimation error for
each agent i as

x̃i = xi(t)− x̂i(t). (23)

We define the vector containing the actual input g(uj) of the
agents belonging to N̄ k

i of agent i, gi as

gi =
[
g(un1

i
)T , . . . , g(unηii

)T
]T

=
[
gTn1

i
, . . . , gnηii

T
]T

(24)
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Fig. 1: Example. Network topology where both the real (bottom) and
the virtual 2-hop (top) communication graphs are highlighted.

and ĝi as the corresponding estimate made by agent i itself as

ĝi =
[
ĝTi,n1

i
, . . . , ĝT

i,n
ηi
i

]T
(25)

with ĝi,nji the estimate of g(unji
) made by agent i.

Moreover, let g̃i be the stacked vector of the estimation errors
made by agent i concerning the term gi, i.e.

g̃i = gi − ĝi (26)

which will be exploited in the following. The following exam-
ple is given to better illustrare the role of the matrix P̄i.

Example 1. Let us consider a network with n = 5, d = 1
and the communication graph given in Figure 1. We have that
the augmented 2-hop (k1 = 2) neighborhood of agent 1 is
N̄ 2

1 = {1, 2, 4} and the matrix P̄1 is defined as:

P̄1 =

 1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 (27)

Now, let the global state be x = [x1, x2, x3, x4, x5]T , it is

x1 = P̄1x = [x1, x2, x4]
T (28)

and
P̄1

Tx1 = P̄1
T P̄1x = [x1, x2, 0, x4, 0]

T (29)

As far as the neighborhood N̄ 2
i is concerned, for i = 1 we

have
N̄ 2

1 =
{
n11, n

2
1, n

3
1

}
(30)

with
n11 = 1, n21 = 2, n31 = 4 (31)

We are now ready to state the problem formulation that we
are addressing in this work.

Problem 1. Let us consider a multi-agent system composed of
n agents. Our problem is to design a k-hop graph-based local
observer for each agent i, for which there exists T > 0 such
that

‖x̃i(t)‖ = 0, ∀ t ≥ T, i ∈ {1, . . . , n}. (32)

That is each agent i is able to track the state of its k-hop
augmented neighborhood N̄ k

i in finite-time.

V. k-HOP GRAPH-BASED STATE OBSERVER

In this section, we derive a finite-time distributed observer
to estimate the state of the agents limiting the interactions to
the k-hop neighborhood.

A. Local Observer Definition
Let us assume each agent i updates its state estimate x̂i,

defined as in (22), according to the following k-hop graph-
based local observer

˙̂xi= f̄(x̂i)+Āix̂
i+Ω̄i Ḡi(ξ

i − x̂i)+Θ̄i sign
(
Ḡiξ

i
)
+ĝi

ξi=H̄i(x
i − x̂i) +

∑
j∈Ni

P̄i

(
−P̄

T

j P̄jP̄
T

i x̂
i+P̄

T

i P̄iP̄
T

j x̂
j
)
(33)

where f̄(x̂i) is defined as

f̄(x̂i) =
[
f(x̂i,n1

i
)T , . . . , f(x̂i,nηii

)T
]T

(34)

and denotes the estimates of the corresponding quantity

f̄(xi) =
[
f(xn1

i
)T , . . . , f(xnηii

)T
]T

(35)

Ω̄i = Ωi ⊗ Id, Θ̄i = Θi ⊗ Id, with Ωi and Θi diagonal gain
matrices defined as:

Ωi = diag{ωn1
i
, . . . , ωnηii

}
Θi = diag{θn1

i
, . . . , θnηii

} (36)

with ωp, θp ∈ R+, and the matrices Āi, Ḡi, B̄i, H̄i defined as

Āi = Iηi⊗A, B̄i = Iηi⊗B, Ḡi = Iηi⊗G, H̄i = Hi⊗Id
(37)

where the diagonal matrix Hi ∈ IRηi×ηi is defined as

Hi(p, q) =

{
1 if p = q ∧ npi = i

0 otherwise
(38)

that is, all the diagonal elements are equal to zero but the
element corresponding to the agent i itself that is equal to 1. Fi-
nally, G ∈ IRd×d is a positive symmetric matrix to be designed
and the signum function is defined as

sign(x) =


1 if x > 0

−1 if x < 0

0 otherwise

(39)

Regarding the term ξi, we can notice that is it composed of
three contributions:
• H̄i(x

i − x̂i): this term is local since xi is known by
agent i and is used to drive x̂i,i = H̄ix̂

i to xi = H̄ix
i;

•
∑
j∈NiP̄i

(
−P̄ T

j P̄jP̄
T

i x̂
i+P̄

T

i P̄iP̄
T

j x̂
j
)

: this standard
consensus-like term compares the estimates made by
agent i and by its k-hop neighbors

• x̂i: this term is introduced in order to have eq. (33) in a
form that would recall the classical innovation term in the
observer design.

Remark 1. Note that, in order to build the matrix P̄j , it is
required the knowledge of the k-hop neighborhood of agent j;
this could induce to believe that when performing P̄iP̄

T

j in the
observer dynamics of the i-th agent, such an agent should
posses knowledge concerning the k-hop neighborhood of
agent j. As a matter of fact, this mathematical notation, even



though very useful for the theoretical analysis, does not reflect
the actual requirements for the implementation of the observer.
In practice, in order to run the algorithm, under the assumption
of global indexes for the agents, it suffices that agent j shares
the vector of estimates with the related global indexes and
agent i can locally filter out all the information concerning
agents which do not belong to its k-hop neighborhood (which
is known according to Assumption 2). We highlight that the
requirement of having global indexes is not demanding espe-
cially when dealing with communication networks where, for
example, the MAC address could be used for this purpose.

B. Local Observer Theoretical Properties
In this section, we are focused on demonstrating that the

k-hop local observer given in eq. (33) solves Problem 1. In
doing so, rather than proving directly eq. (32), we will proceed
by changing point of view. That is, instead of proving that
each agent i is able to estimate the state of the k-hop neigh-
boring agents (namely, xi), we will first demonstrate that this
requirement is equivalent to show that the local state xi of
each agent i is estimated by the agents belonging to its k-hop
augmented neighborhood N̄ k

i ; and, then, we will prove that
this is achieved by the observer given in eq. (33).

In this regard, let us consider the generic agent i and let us
notice that for any index l ∈ N̄ k

i , we have x̂i,l = SlP̄
T

i x̂
i,

while for any index l /∈ N̄ k
i we have that SlP̄

T

l x̂
i is zero with

Sl a selection matrix defined as

Sl = {Od, . . . , Id︸︷︷︸
l−th

, . . . , Od︸︷︷︸
n−th

}

At this point, let us define ζ̂
i

as the vector that collects
the estimates of the state xi computed by all agents j having
agent i in their k-hop neighborhood:

ζ̂
i

=


SiP̄

T

n1
i
x̂n

1
i

...
SiP̄

T

n
ηi
i

x̂n
ηi
i

 =

 x̂n1
i ,i

...
x̂nηii ,i

 (40)

where x̂npi ,i is the estimate of the state xi carried out by the
agent npi . In addition, let us define the vector ζi collecting ηi
copies of the state xi as

ζi = 1ηi ⊗ xi (41)

Furthermore, let us denote with ζ̃
i

the collection of the
estimation errors of its state xi, made by the agents belonging
to Vi

ζ̃
i

= ζi − ζ̂
i

(42)

We now provide our first result, which states an equivalence
between the fact an agent i can estimate the state of the agents
belonging to the augmented k-hop neighborhood N̄ k

i , and the
fact that the state xi of an agent i can be estimated by the
agents belonging to its k-hop augmented neighborhood N̄ k

i .

Lemma 1. Consider a multi-agent system running the local
k-hop observer given in eq. (33). The following facts are equiv-
alent:
• ‖ ζ̃

i
‖→ 0, ∀ i ∈ {1, . . . , n}

• ‖ x̃i ‖→ 0, ∀ i ∈ {1, . . . , n}

Proof. The proof simply follows from the observation that by
considering the stacked vectors

ζ̃ =

ζ̃
1

...
ζ̃
n

 , x̃ =

x̃
1

...
x̃n


with i ∈ (1, . . . , n), it is always possible for any graph L and
for each k to find a permutation matrix T of proper dimensions,
that is full-rank by construction, such that x̃ = T ζ̃.

From Lemma 1 it follows that, from a mathematical stand-
point, Problem 1, and more precisely eq. (32), can be equiva-
lently restated according to the following formulation.

Problem 2. Let us consider a multi-agent system composed of
n agents. Our problem is to design a k-hop graph-based local
observer for each agent i, for which there exists Tx,i > 0 such
that

‖ζ̃
i
‖ = 0, ∀ t ≥ Tx,i, i ∈ {1, . . . , n} (43)

In the rest of the section, we focus our attention on demon-
strating that the condition given in eq. (43) can be proven
by letting each agent i run the k-hop local observer given in
eq. (33). Let us now introduce the (sub)-graph Gi obtained
by reducing G with respect to Vi, that is Gi = {Vi, Ei} where
Vi and Ei ⊆ E : (p, q) ∈ Ei ↔ {p, q} ∈ Vi. At this point, we
can define the Laplacian matrix Li associated to Gi as

Li = Di −Ai (44)

where Di and Ai are the related degree matrix and adjacency
matrix, respectively. Let us now define the matrix Mi as

Mi = Li +Hi (45)

The following result shows that the matrix Mi is positive
definite.

Lemma 2. Consider Mi as in eq. (45), then in the case of
connected undirected graphs the following holds

λi > 0, ∀λi ∈ σ (Mi) (46)

Proof. The proof follows the same steps as in [17]; then, it
is here omitted for the sake of brevity. Intuitively, the result
follows from the connectedness of the Laplacian matrix Li
associated to (sub)-graph Gi.

The following lemma provides the form of the error dynam-
ics ζ̃

i
for all i ∈ {1, . . . , n}. To this end, let us first denote

with %i the vector collecting ηi copies of the input g(ui) as

%i = 1ηi ⊗ g(ui) (47)

and with %̂i the corresponding estimate which collects, as usual,
the estimates of g(ui) made by the agent npi with p ∈ Vi, i.e.

%̂i =
[
ĝTi,n1

i
, . . . , ĝT

i,n
ηi
i

]T
(48)

and we use %̃i to denote the quantity

%̃i = %i − %̂i (49)

Furthermore, let us denote with f̄(ζi) the vector

f̄(ζ̂
i
) =

[
f(x̂n1

i ,i
)T , . . . , f(x̂nηii ,i

)T
]T
. (50)



Lemma 3. Consider a multi-agent system running the local
k-hop observer given in eq. (33). The error dynamics of ζ̃

i

with i ∈ {1, . . . , n} has the following form:

˙̃
ζi=(f̄(ζi)− f̄(ζ̂

i
)) +

(
Āi−ωi(Mi ⊗G

)
ζ̃
i

−θi sign
(

(Mi ⊗G)ζ̃
i
)

+%̃i
(51)

Proof. The dynamics of the generic term x̂l,i in (40) can be
expressed as

˙̂xl,i = SiP̄
T

l
˙̂xl

= SiP̄
T

l

(
f̄(x̂l) + Ālx̂

l + ωiḠlξ
l

+ θi sign
(
Ḡlξ

l
)

+ ĝl
)

= f(x̂l,i) +Ax̂l,i + ωiGSiP̄
T

l ξ
l

+ θi sign
(
GSiP̄

T

l ξ
l
)

+ ĝl,i

(52)

Let us now detail the form of the term SiP̄
T

l ξ
l. In particular,

it should be noticed that this term is identically zero for l /∈ Vi;
differently, for each l ∈ Vi, it takes the following form

SiP̄
T

l ξ
l = SiP̄

T

l H̄l(x
l − x̂l)

+ SiP̄
T

l

∑
j∈Nl

P̄l

(
P̄
T

l P̄lP̄
T

j x̂
j − P̄

T

jP̄jP̄
T

l x̂
l
)

= SiP̄
T

l H̄l(x
l − x̂l) +

∑
j∈Nl∩Vi

(x̂l,i − x̂j,i)

(53)

This expression can be further simplified by noticing that for
l = i we have SiP̄

T

l H̄lx
l = xi, and Nl ∩ Vi = Ni, from

which it follows

SiP̄
T

i ξ
i = (xi − x̂i,i) +

∑
j∈Ni

(x̂i,i − x̂j,i) (54)

and for l 6= iwe have SiP̄
T

l H̄lxl = 0d, from which it follows

SiP̄
T

l ξ
l =

∑
j∈Nl∩Vi

(x̂l,i − x̂j,i) (55)

where it should be noticed that l ∈ N k
i , andNl∩Vi is different

from the empty set by construction.
Summarizing, eq. (52) for l = i can be restated as

˙̂xi,i = f(x̂i,i) +Ax̂i,i + ωiG

(xi − x̂i,i)+
∑
j∈Ni

(x̂j,i − x̂i,i)


+ θi sign

G
(xi − x̂i,i)+

∑
j∈Ni

(x̂j,i − x̂i,i)

+ĝl,i

(56)
and for l 6= i can be restated as

˙̂xl,i = f(x̂l,i) +Ax̂l,i + ωiG

 ∑
j∈Nl∩Nki

(x̂j,i − x̂l,i)


+ θi sign

G
 ∑
j∈Nl∩Vi

(x̂j,i − x̂l,i)

+ ĝl,i

(57)

At this point, based on eqs. (56) and (57), we can write the
dynamics of the stacked vector ζ̂

i
defined in eq. (40) collecting

the estimate of the state xi carried out by the agents j ∈ Vi as

˙̂
ζi = f̄(ζ̂

i
) + Āiζ̂

i
+ ωiḠi

(
L̄i + H̄i

)
ζ̃
i

+ θi sign
(
Ḡi(L̄i + H̄i)ζ̃

i
)

+ %̂i
(58)

where L̄i = Li ⊗ Id and the following fact has been exploited

L̄iζ
i=(Li⊗Id) (1ηi⊗xi)=(Li 1ηi)⊗ (Id xi) = 0ηid (59)

At this point, by noticing that the dynamics of ζi can be
written as

ζ̇
i

= f̄(ζi) + Āiζ
i + %i (60)

it follows that the error dynamics of stacked vector ˙̃
ζi is

˙̃
ζi=(f̄(ζi)− f̄(ζ̂

i
)) +

(
Āi−ωi Ḡi(L̄i+H̄i)

)
ζ̃
i

−θisign
(
Ḡi(L̄i+H̄i)ζ̃

i
)

+%̃i
(61)

Finally, by resorting to well-known properties of the Kro-
necker product, the following holds

Ḡi(L̄i + H̄i) = (Li +Hi)⊗G (62)

which allows to rewrite eq. (61) as

˙̃
ζi=(f̄(ζi)− f̄(ζ̂

i
)) +

(
Āi−ωi(Mi ⊗G)

)
ζ̃
i

−θi sign
(

(Mi ⊗G)ζ̃
i
)

+%̃i
(63)

thus completing the proof.

The following lemma provides a set of conditions which will
be used later to establish the convergence of the error dynamics
given in eq. (51).

Lemma 4. Let us consider Āi and Mi defined as in eqs. (37)
and (45), respectively. Then, the following holds true

(Mi ⊗G)
(
Āi − ωi(Mi ⊗G)

)
+ lf‖(Mi ⊗G)‖Iηid ≺ 0

(64)
if ωi and G are chosen such that

ωi >
1

λj

(
1 +

lf ‖(Mi ⊗G)‖
λjλmin(GTG)

)
(65)

and

GTA+ATG− 2GTG ≺ 0. (66)

Proof. In order to prove the lemma, we notice that Mi is a
symmetric positive definite matrix and, thus, there exists a ma-
trix T ∈ IRηi×ηi such that T Λi TT = Mi, with Λi a diagonal
matrix. Now, by exploiting the properties of the Kronecker
product we have

(Mi ⊗G)
(
Āi − ωi(Mi ⊗G)

)
=(

TΛiT
T ⊗G

)
Āi︸ ︷︷ ︸

T1

−ωi
(
TΛiT

T ⊗G
)

(TΛiT
T ⊗G)︸ ︷︷ ︸

T2

(67)

By recalling the property

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (68)



and that Āi = Iηi ⊗A, we have

Āi = Iηi ⊗A = (Ti ⊗ I) (Iηi ⊗A)
(
TTi ⊗ I

)
(69)

and (
TiΛiT

T
i ⊗G

)
= (Ti ⊗ I) (Λi ⊗G)

(
TTi ⊗ I

)
(70)

At this point, by exploiting eqs. (69) and (70) and by taking
into account the property

TiAT
T
i ⊗ TiBTTi = Ti(A⊗B)TTi (71)

we can write the first term T1 as

(Ti ⊗ I) [(Λi ⊗G) (Iηi ⊗A)]
(
TTi ⊗ I

)
(72)

and the second term T2 as

ωi (Ti ⊗ I) [(Λi ⊗G) (Λi ⊗G)]
(
TTi ⊗ I

)
(73)

Furthermore, by substituting eqs. (72) and (73) in eq. (67) we
obtain

(Ti⊗I) [(Λi⊗G) ((Iηi⊗A)−ωi (Λi⊗G))]
(
TTi ⊗I

)
(74)

from which it can be noticed that the negative defi-
niteness of the matrix (Mi ⊗G)

(
Āi − ωi(Mi ⊗G)

)
can be equivalently stated in terms of the matrix
(Λi ⊗G) ((Iηi ⊗A)− ωi (Λi ⊗G)). By focusing on
this last matrix, we notice that

(Λi ⊗G) ((Iηi ⊗A)− ωi (Λi ⊗G)) =

(Λi ⊗GA)− ωi
(
Λi

2 ⊗GTG
) (75)

Now, in order to have

(Λi ⊗GA)− ωi
(
Λi

2 ⊗GTG
)

+ lf‖(Mi ⊗G)‖Iηid ≺ 0
(76)

since Λi is a diagonal matrix, the result of the Kronecker
product is a block-diagonal matrix, for which the matrices on
the main diagonal have the following structure

λj
(
GTA− ωi λj GTG

)
+ lf‖(Mi ⊗G)‖Id, λj ∈ σ (Mi)

(77)
which can be equivalently written as:

λj

(
GTA− ωi λj GTG+

lf ‖(Mi ⊗G)‖
λj

Id

)
(78)

By recalling from Lemma 2 that λj > 0, under the assump-
tion

ωi >
1

λj

(
1 +

lf ‖(Mi ⊗G)‖
λjλmin(GTG)

)
(79)

we have that if the following holds true(
GTA−GT G

)
≺ 0 (80)

then, by construction also the following holds(
GTA− ωi λj GT G+

lf ‖(M ⊗G)‖
λj

Id

)
≺ 0 (81)

Finally, we notice that the negative definiteness of the ma-
trix GA−GTG follows from the negative definiteness of its
symmetric part, that is

1

2

(
GTA+AT G− 2GT G

)
≺ 0 (82)

where it should be noticed that the existence of a matrix G
that satisfies eq. (66) is ensured by the fact that (A, In) is

stabilizable and observable [46, Theorem 2]. Thus, the result
follows.

Remark 2. The tuning of the gain ωi in eq. (79) implies the
knowledge of the minimum eigenvalue of Li, where the un-
derlying graph Gi scales only according to the k-hop neighbor-
hood of agent i. However, as pointed out in [46] and references
therein, this information is generally not available to the agents.
Nevertheless, it can be estimated for example, by resorting
to adaptive control techniques [47] or by performing spectral
estimation analysis [48].

We are now ready to establish our main result, that is a set of
conditions under which the convergence of the error dynamics
given in eq. (51) can be guaranteed. In doing so, we recall
that, due to the equivalence established in Lemma 1, this also
guarantees the convergence of the proposed k-hop observer
given in eq. (33). Thus providing a solution for Problem 1.

Theorem 4. For i ∈ {1, . . . , n}, let us consider the error
dynamics given in eq. (51) and let us assume that ‖K[%̃i]‖ is
bounded in the sense defined in Section III-B. Then, ζ̃

i
reaches

the origin in finite time Tx,i

Tx,i ≤
√

2
λmax(Mi)λmax(G)

φi
ζ̃i(0)

given that the gain θi satisfies

θi >
λmax(Mi)λmax(G)

λmin(Mi)λmin(G)
‖K[%̃i]‖ (83)

and that the condition in eq. (64) of Lemma 4 holds true.

Proof. To prove the result we notice that the proposed dis-
tributed finite-time state observer and the resulting error dy-
namics are discontinuous thus the nonsmooth analysis must be
used. Consider the following continuous differentiable function
as Lyapunov candidate function

Vi(ζ̃
i
) =

1

2
ζ̃
iT (Mi ⊗G) ζ̃

i
(84)

To compute the generalized time derivative V̊i(ζ̃
i
) we notice

that Vi(ζ̃
i
) is a continuous differentiable function and that the

right-hand side of eq. (51) is discontinuous, thus Theorem 2
applies, that is

V̊i(ζ̃
i
) =

(
∇Vi(ζ̃

i
)
)T

K
[

˙̃
ζi
]

= ζ̃
iT (Mi ⊗G) K

[
˙̃
ζi
] (85)

At this point, by exploiting eq. (51) and the sum property of
the Filippov calculus given in Theorem 3 we have

V̊i(ζ̃
i
) ⊂ ζ̃

iT (Mi ⊗G)K
[
f̄(ζi)− f̄(ζ̂

i
)
]

+ ζ̃
iT (Mi ⊗G)K

[(
Āi−ωi(Mi ⊗G)

)
ζ̃
i
]

+ ζ̃
iT (Mi ⊗G)K

[
−θi sign

(
(Mi ⊗G)ζ̃

i
)]

+ ζ̃
iT (Mi ⊗G)K

[
%̃i
]

(86)

In particular, by exploiting the continuity property of the Fil-
ippov calculus given in Theorem 3, we have that the following



holds for the first and second term of eq. (86)

ζ̃
iT (Mi ⊗G)K

[
f̄(ζi)− f̄(ζ̂

i
)
]

=

ζ̃
iT (Mi ⊗G) (f̄(ζi)− f̄(ζ̂

i
))

(87)

and

ζ̃
iT (Mi ⊗G)K

[(
Āi−ωi(Mi ⊗G)

)
ζ̃
i
]

=

ζ̃
iT (Mi ⊗G)

(
Āi−ωi(Mi ⊗G)

)
ζ̃
i

(88)

Furthermore, by exploiting again the multiplication property
of the Filippov calculus given in Theorem 3 we have that the
following holds for the third term of eq. (86)

ζ̃
iT (Mi ⊗G)K

[
−θi sign

(
(Mi ⊗G)ζ̃

i
)]

=

−θi ζ̃
iT (Mi ⊗G)K

[
sign

(
(Mi ⊗G)ζ̃

i
)]

=

−θi ‖(Mi ⊗G)ζ̃
i
‖1

(89)

where it should be notice that

K[sign(x)]


1 if x > 0

−1 if x < 0

[−1, 1] if x = 0

(90)

and that by construction it holds

xTK[sign(x)] =


‖x‖1 if x > 0

‖x‖1 if x < 0

0 if x = 0

= ‖x‖1 (91)

At this point, by exploiting eqs. (87), (88), (89), it follows
that eq. (86) can be re-written as

V̊i(ζ̃
i
) = ζ̃

iT (Mi ⊗G) (f̄(ζi)− f̄(ζ̂
i
))

+ ζ̃
iT (Mi ⊗G)

(
Āi−ωi(Mi ⊗G)

)
ζ̃
i

− θi ‖(Mi ⊗G)ζ̃
i
‖1 + ζ̃

iT (Mi ⊗G) K[%̃i]

(92)

and by exploiting the notion of norm for set-valued maps
introduced in Section (III) we have

V̊i(ζ̃
i
) ≤ ‖ζ̃

i
‖‖ (Mi ⊗G) ‖‖f̄(ζi)− f̄(ζ̂

i
)‖

+ ζ̃
iT (Mi ⊗G)

(
Āi − ωi(Mi ⊗G)

)
ζ̃
i

− θi‖ζ̃
iT (Mi ⊗G) ‖1+

+ ‖ζ̃
i
‖‖ (Mi ⊗G) ‖‖K[%̃i]‖

(93)

Concerning the first term of the right-hand side of eq. (93), it
holds

‖ζ̃
i
‖‖ (Mi ⊗G) ‖‖f̄(ζi)− f̄(ζ̂

i
)‖ ≤ lf ‖ (Mi ⊗G) ‖‖ζ̃

i
‖2

= ζ̃
iT [lf ‖ (Mi ⊗G) ‖ Id] ζ̃

i

(94)
that, together with the second term and by exploiting Lemma 4,
leads to

ζ̃
iT (Mi ⊗G)

(
Āi − ωi(Mi ⊗G)

)
ζ̃
i

+ ‖ζ̃
i
‖‖ (Mi ⊗G) ‖‖f̄(ζi)− f̄(ζ̂

i
)‖

≤ ζ̃
iT
[
(Mi ⊗G)

(
Āi − ωi(Mi ⊗G)

)
+ (lf ‖ (Mi ⊗G) ‖ Id)] ζ̃

i
≤ 0

(95)

Therefore, eq. (93) can be finally rewritten as

V̊i(ζ̃
i
) ≤ − θi‖ζ̃

iT (Mi ⊗G) ‖1 + ‖ζ̃
i
‖‖ (Mi ⊗G) ‖‖K[%̃i]‖

≤ −θi ‖ (Mi ⊗G)ζ̃
i
‖ +‖ζ̃

i
‖‖ (Mi ⊗G) ‖‖K[%̃i]‖

(96)
At this point, by considering that

‖ (Mi ⊗G) ζ̃
i
‖1 ≥ ‖ (Mi ⊗G) ζ̃

i
‖ ≥ ‖ (Mi ⊗G) ‖‖ζ̃

i
‖

≥ λmin (Mi ⊗G) ‖ζ̃
i
‖

≥ λmin (Mi)λmin (G) ‖ζ̃
i
‖

(97)
the following holds for the generalized Lyapunov derivative

V̊i(ζ̃
i
) ≤ −θi λmin(Mi)λmin(G) ‖ ζ̃i ‖

+ ‖ζ̃
i
‖‖ (Mi ⊗G) ‖‖K[%̃i]‖

≤ −φi ‖ ζ̃i ‖

(98)

with φi defined as

φi=
[
θiλmin(Mi)λmin(G)− ‖ (Mi ⊗G) ‖‖K

[
%̃i
]
‖
]

(99)

Now, by recalling the definition of the Lyapunov function
as in eq. (84), we have

Vi(ζ̃
i)

1
2 ≤

√
λmax(Mi)λmax(G) ‖ ζ̃i ‖ (100)

and thus for the generalized derivative V̊i(ζ̃
i
) the following

holds

V̊i(ζ̃
i
) ≤ −Vi(ζ̃i)

1
2

φi√
λmax(Mi)λmax(G)

(101)

At this point, by noticing from Theorem 2 that
V̇ (ζ̃

i
) ∈a.e. V̊i(ζ̃

i
), the finite-time convergence of the Lya-

punov function to the origin can be attained by choosing θi
such that φi > 0, that is

θi >
λmax(Mi)λmax(G)

λmin(Mi)λmin(G)
‖ B̄i ‖ ‖K[%̃i]‖ (102)

and the setting time is

Tx,i = 2

√
λmax(Mi)λmax(G)

φi
Vi(ζ̃

i(0))
1
2

≤
√

2
λmax(Mi)λmax(G)

φi
ζ̃i(0)

This completes the proof.

At this point, the following result on the boundedness of the
state estimation error of each agent i holds when considering a
bounded input map g(·) as in Assumption 1-a).

Corollary 2. Consider a multi-agent system with dynamics as
in (18). Let each agent i run a distributed state observer as
in (33) under Assumption 1-a), that is with known bounded
input map g(·). Then, it is

‖x̃i(t)‖ ≤ ‖x̃i(0)‖, ∀ t ≥ 0 (103)

and there exists Tx > 0 such that

‖x̃i(t)‖ = 0, ∀ t > Tx (104)

with Tx = max
i∈V
{Tx,i}.



Proof. This result follows straightforwardly from the defini-
tion of vector ζi in eq. (41) and from Theorem 4.

Remark 3. Theorem 4 demonstrates that the proposed local
observer exhibits finite-time convergence under a boundedness
condition of the estimate K[%̃i] of the input map. According
to Assumption 1, two different scenarios arise, namely that
either g(·) is bounded or its derivative K[ġ](·) is bounded.
In the first case, the input map g(·) can be considered as a
pure disturbance, and the convergence of the state observer
is ensured by the knowledge of an upper bound for g(·) from
which an upper-bound of K[%̃i] follows. In the second case,
we can design a finite-time observer for the input map g(·)
and the convergence of the input observer is ensured by the
the boundedness of the derivative K[ġ](·). Furthermore, the
convergence of the state observer follows from the the fact
K[%̃i] goes to zero in finite-time.

C. k-hop Graph-Based Input Map Observer
In this section, we derive a finite-time distributed observer

to estimate the agents’ input map g(·) in eq. (18). Since the
mathematical derivation follows from the reasoning proposed
in Section V for the state observer, details concerning common
aspects will be omitted for the sake of brevity.

Let us assume that agent i is willing to estimate the stacked
vector of the input maps gj = g(uj) of the agents j belonging
to its k-hop augmented neighborhood N̄ k

i , i.e. gi as defined
in eq. (25). We reiterate that, in the case the input map gi is
not bounded, the convergence of the observer (33) requires the
knowledge of the estimate ĝi, as discussed in Remark 3.

Therefore, similarly to the observer proposed in Section V
for xi, we design the following update law for stacked vector
of input maps gi:

˙̂gi = Π̄i sign
(
ηi − ĝ

i
)

ηi = H̄i(g
i−ĝi)

+
∑
j∈Ni

P̄i

(
−P̄

T

j P̄jP̄
T

i ĝ
i+P̄

T

i P̄iP̄
T

j ĝ
j
)

+ĝi
(105)

with Π̄i = Πi ⊗ Id and Πi a diagonal tuning matrix such as:

Πi = diag{πn1
i
, . . . , πnηii

} (106)

and πnli ∈ R+. Moreover, let us define the estimation error
g̃i = gi − ĝi. We are now ready to demonstrate the finite-time
convergence of the k-hop local observer given in eq. (105).

Theorem 5. Let us consider the observer error dynamics de-
scribed in eq. (105). According to Assumption 1-b), let us
denote with d2 the bound of the derivative K[ġ](·) of the input
map, i.e., ‖K[ġ](·)‖ ≤ d2. Then %̃i as in eq. (49) reaches the
origin in finite time Tg,i

Tg,i ≤
√

2
λmax(Mk

i )

ψi
%̃i(0)

given that the gain πi satisfies

πi >
λmax(Mi)

λmin(Mi)

√
ηi d2 (107)

Proof. In order to prove the finite-time convergence of the
input map observer, we follow a similar reasoning as before.
Therefore, in the following we sketch only the main aspects

of the analysis. Briefly, as pointed out in Lemma 1 for the
state estimation, also for the input map estimation it is possible
to change point of view. That is, instead of proving that each
agent i is able to estimate the input map of the agents belonging
to its k-hop augmented neighborhood, namely gi, it can be
proved that the local input map gi = g(ui) of each agent i is
estimated by the agents belonging to Vi as previously defined.
Therefore, by considering the vector %̂i containing the input
map estimates made by the agents belonging to Vi as defined
in eq. (48) and by following exactly the same steps as in the
proof of Lemma 3, we obtain

˙̂%
i
=πi sign

(
(Li+Hi) ⊗ Id)%̃i

)
= πi sign

(
(Mi ⊗ Id) %̃i

)
(108)

from which by recalling the definition of %̃i as in eq. (49) we
have

˙̃%
i

=− πi sign
(
(Mi ⊗ Id) %̃i

)
+ %̇i (109)

Thus, a similar structure as in eq. (51) is obtained, where Id
appears instead of G.

Let us now consider the following Lyapunov candidate func-
tion

Vi(%̃
i) =

1

2
%̃iT (Mi ⊗ Id) %̃i (110)

for which according to Theorem 2, the generalized derivative
V̊i(%̃

i) is computed as

V̊i(%̃
i)=

(
∇Vi(%̃i)

)T
K
[

˙̃%
i
]

= %̃iT (Mi ⊗ Id)K
[

˙̃%
i
]

(111)

At this point, by exploiting eq. (109) along with the sum prop-
erty and the vector property of the Filippov calculus given in
Theorem 3 we have

V̊i(%̃
i) ⊂ %̃iT (Mi ⊗ Id)K[−πi sign

(
(Mi ⊗ Id) %̃i

)
]

+ %̃iT (Mi ⊗ Id)K[%̇i]

⊂ %̃iT (Mi ⊗ Id)K[−πi sign
(
(Mi ⊗ Id) %̃i

)
]

+ %̃iT (Mi ⊗ Id) (1ηi ⊗K[ġi])
(112)

where eq. (47) has been used for applying the vector property.
Now, by performing similar manipulations as in the proof of
Theorem 4, we obtain:

V̊i(%̃
i) ≤ −πi ‖(Mi ⊗ Id)%̃i ‖1

+ ‖%̃i‖‖ (Mi ⊗ Id) ‖‖(1ηi ⊗K[ġi])‖
≤ −πi ‖(Mi ⊗ Id)%̃i ‖1
+ ‖%̃i‖‖ (Mi ⊗ Id) ‖

√
ηi d2

(113)

where the next facts have been exploited to derive the last in-
equality ‖(1ηi ⊗K[ġi])‖ ≤

√
ηi ‖K[ġi]‖ and ‖K[ġi]‖ ≤ d2.

At this point, the following bound on the generalized derivative
V̊i(%̃

i) holds
V̊i(%̃

i) ≤ −ψi ‖%̃i‖ (114)

where ψi is defined as

ψi = [πi λmin(Mi)− ‖Mi ⊗ Id ‖
√
ηi d2] (115)

Similarly to the proof of Theorem 4, we obtain the final
result

V̊i(%̃
i) ≤ − ψi√

λmax(Mi)
Vi(%̃

i)
1
2 (116)



from which the finite-time convergence of the Lyapunov func-
tion to the origin holds if

πi >
λmax(Mi)

λmin(Mi)

√
ηi d2 (117)

with settling time

Tg,i = 2

√
λmax(Mk

i )

ψi
Vi(%̃

i(0))
1
2 ≤
√

2
λmax(Mk

i )

ψi
%̃i(0)

Remark 4. Theorem 5 provides conditions for the conver-
gence of the finite-time observer of the input map. It should be
noticed that the proposed reasoning could be iterated in order
to relax the boundedness condition on the input map and its
first r derivatives, by assuming the existence of an upper bound
on the r+1-th derivative and deriving an observer of higher or-
der. In our opinion, this represents a good compromise between
computational complexity and strictness of the assumptions,
i.e., input map boundedness or its derivatives boundedness that
can be taken into consideration in the network design.

At this point, the following result holds on the boundedness
of the input estimation error for each agent i.

Corollary 3. Consider a multi-agent system with dynamics
as in (18). Let each agent i run an input observer as in (105)
under Assumption 1-b). Then,

‖gi(t)‖ ≤ ‖gi(0)‖, ∀ t ≥ 0 (118)

and there exists Tg > 0 such that

‖gi(t)‖ = 0, ∀ t > Tg (119)

with Tg = max
i∈V
{Tg,i}.

Proof. This result follows straightforwardly from the defini-
tion of vector %̃i(t) in eq. (49) and from Theorem 5.

In addition, the following result holds for a multi-agent sys-
tem running the state observer together with the input observer,
by combining Corollary 2 and Corollary 3.

Lemma 5. Consider a multi-agent system with dynamics as
in (18). Assume each agent i runs a distributed state observer
as in (33) and input dependent observer as in (105) under
Assumption 1-b). Then, there exist Tg > 0 and X > 0 such
that

‖x̃i(t)‖ ≤ X , ∀ t > Tg (120)

with Tg = max
i∈V
{Tg,i} as per Corollary 3 and X defined as

X = max
i∈V

{
sup

0≤τ≤Tg
‖x̃i(τ)‖

}
. (121)

Furthermore, there exists Tgx > 0 such that

‖x̃i(t)‖ = 0, ∀ t > Tgx (122)

with Tgx = Tg + Tx and Tx defined in Corollary 2.

Proof. To prove the Lemma, we notice that for generalized
Lyapunov function derivative in Theorem 4 to be negative
definite, the condition given in eq. (102) must be satisfied, see
eqs. (98)–(101) for further details.

In this regard, from Corollary 3 we know that there exists
time Tg such that this condition will be satisfied for any t > Tg

(and for any choice of θi > 0). This also ensures that starting
from Tg the state estimation error ζ̃

i
will be decreasing for any

agent i, that is ζ̃
i
(t) ≤ ζ̃

i
(Tg) with t ≥ Tg .

Let us now demonstrate that the Lyapunov function remains
finite over this time interval. To this end, let us consider again
the inequality given for the generalized Lyapunov derivative in
eq. (98), that is

V̊i(ζ̃
i
) ≤ −θi λmin(Mi)λmin(G) ‖ ζ̃i ‖

+ ‖ζ̃
i
‖‖ (Mi ⊗G) ‖‖K[%̃i]‖

≤ −φi ‖ ζ̃i ‖

(123)

In particular, since the condition given in eq. (102) may not
hold in the time time-interval [0, Tg], it follows that φi as
defined in (99) may be negative, that is φi < 0.

Therefore, the Lyapunov function in (84) could increase
accordingly in the time interval [0, Tg], and so would do the
state estimation error ζ̃

i
. Nevertheless, since the generalized

Lyapunov derivative V̊i(ζ̃
i
) is upper-bound from above by a

continuous positive quantity as given in (123), and the time
interval is finite, it follows that the the Lyapunov function re-
mains finite over this time-interval and thus also the estimation
error ζ̃

i
remains finite. From this reasoning, it follows that an

upper bound for the state estimation error ζ̃
i

of any agent i can
be found as

X = max
i∈V

{
sup

0≤τ≤Tg
‖x̃i(τ)‖

}
(124)

which is the largest value (in norm) that such an error may
have achieved over this time interval [0, Tg].

At this point, to prove the last part of the Corollary, it is
sufficient to notice that for any time t > Tg, the conditions of
Corollary 2 holds, and in particular

‖x̃i(t)‖ ≤ ‖x̃i(Tg)‖ ≤ X , ∀ t > Tg (125)

and
‖x̃i(t)‖ = 0, ∀ t > Tg + Tx (126)

VI. CLOSED LOOP ANALYSIS

In many practical applications, the state estimated according
to the observer described in the previous sections is used to
implement a local feedback control law. Although, the stability
of the coupled observer and controller scheme might not ab-
stract from the particular agent dynamics and feedback control
law, we investigate in this section some general conditions
that might turn useful to make easier the design of the control
law and to guarantee the overall stability of the multi-agent
dynamics when closing the loop through the state observer.

Consider the following stacked multi-agent dynamics

ẋ = f̄(x) + (In ⊗A)x+ g(u) (127)

where each agent i has a non-linear dynamics of the form (18)
and

g(u) =
[
g(u1)T . . . g(un)T

]T
Let us consider a general nonlinear state-feedback u = q(x)
defined as

u = q(x) =
[
q1(x1)T · · · qn(xn)T

]
(128)



where each agent i needs to exploit k-hop information to com-
pute its control input ui = qi(x

i) with xi defined as in (19).
In particular, the following assumption is taken on the func-

tion qi, with i ∈ {1, . . . , n}.
Assumption 3. One of the following conditions must hold:

a) the function qi(·) is bounded (with a known upper-
bound);

b) the derivative K[q̇i](·) is bounded (with a known upper-
bound).

Note that Assumption 3 is required when closing the loop
with a state-feedback control of the form ui = qi(x

i) to ensure
the satisfaction of Assumption 1. In particular, Assumption 3-a)
suffices to ensure the satisfaction of Assumption 1-a); while
Assumption 3-b) suffices to ensure the satisfaction of Assump-
tion 1-b).

Remark 5. Note that, since xi is not locally available, the
following control is implemented instead

ui = qi(x̂
i) = qi(x

i − x̃i) (129)

with x̂i the estimation of xi made by agent i as defined in
eq. (22). We point out that the structure of the control input
may differ from agent to agent (i.e., qi(·) 6= qj(·), i 6= j).
Furthermore, even if all agents’ control input share the same
structure qi(·) = q(·),∀ i ∈ {1, . . . , n}, their implementation
will change since their local k-hop neighborhood will be dif-
ferent (i.e., xi 6= xj , i 6= j).

At this point, let us define the following function Φ(x, x̃)

Φ(x, x̃) = f(x) + (In ⊗A)x+ g(q(x− x̃)) (130)

with x̃ the disturbance (input) of the system and Φ(x, 0nd) the
nominal (unforced) dynamics represented by (127) and (128),
i.e.,

ẋ = f(x) + (In ⊗A)x+ g(q(x)) = Φ(x, 0nd) (131)

The following assumption is now made.

Assumption 4. The nonlinear state-feedback u = q(x)
in (128) ensures the convergence of the multi-agent system
towards an equilibrium representing a given team objective.

We are now ready to state the main theorem of this section.

Theorem 6. Consider a multi-agent system with dynamics as
in (127) Let each agent i runs a distributed state observer as
in (33) and input observer as in (105) and implements the lo-
cal control input as in (129) under Assumptions 1-b) and 3-b).
Then, if the dynamics Φ(x, x̃) is set Input-to-State Stable and
Assumption 4 holds, the multi-agent system reaches an equilib-
rium representing the team objective.

Proof. In order to prove the theorem, we resort on the well-
known results of the set Input-to-State Stability (set-ISS) [49]
In particular, from the set-ISS assumption of the dynamics
Φ(x, x̃), it follows that there exist a class KL function β and a
class K function γ such that for any initial state x(0) and any
input x̃(t), the solution x(t) exists for all t ≥ 0 and satisfies

‖x(t)‖A ≤ β (‖x(0)‖A , t) + γ

(
sup

0≤τ≤t
‖x̃(τ)‖

)
(132)

where ‖x‖A = dist(x,A) = inf
a∈A
{‖x − a‖} denotes the

point to set distance.

At this point, we notice that Lemma 5 holds under Assump-
tions 1-b) and 3-b). Therefore, we know that there exists an
upper bound X ≥ 0, such that for all agents ‖x̃i(t)‖ ≤ X ,
which in turn implies that ‖x̃(τ)‖ <

√
nX , ∀ t. In addition,

from Lemma 5 we also know that there exists Tgx > 0 such
that ‖x̃i(t)‖ = 0,∀ t > Tgx.

Therefore, by considering x(Tgx), we have that for any
t > Tgx the multi-agent system evolves from this new initial
condition x(Tgx) according to the nominal dynamics Φ(x, 0):

‖x(t)‖A ≤ β
(
‖x(Tgx)‖A , t− Tgx

)
+ γ

(
sup

Tgx≤τ≤t
‖x̃(τ)‖

)
≤ β

(
‖x(Tgx)‖A , t− Tgx

)
(133)

thus an equilibrium is achieved by construction and the result
follows.

VII. SIMULATION CASE STUDIES

Let us consider a multi-agent system composed of n = 100
agents the interactions of which are described by an undirected
graph G = {V, E} representing a regular lattice network. More-
over, let us assume that it is k = 2 for the state observer (2-hop
observer).

Let us assume that, each agent in eq. (18) has the following
first order dynamical nonlinear model

ẋi = − tanh(x3i ) + g(ui) (134)

where xi, ui ∈ IR and input mapping g(·) will be specified in
the following.

Two case studies are considered: i) the first one shows the
fundamental properties of the observer with unbounded exoge-
nous inputs, and ii) the second one demonstrates that we can
safely close the loop on the estimated state to achieve a stable
collective behavior. Observer parameters have been chosen to
satisfy the conditions given in Theorems 4 and 5. In particular,
gains in (36) have been chosen for all simulations as ωηji = 5,
θηji

= 130, ∀ i = 1, 2, · · · , n and j ∈ N̄ k
i , while it is G = 3

in (37) and πnji = 120 in (106) (in the case the input observer
is running).

A. First case study: Unbounded control input
Figure 2 describes the simulation results for the second

scenario, where each agent is driven by the exogenous input
given by

ui(t) = si sin(2πfi t) + ri t+ ui0 (135)

where si, fi, ri and ui0 are scalar parameter different for each
agent and randomly generated. In this simulation case study,
function gi(·) in (134) is a classical dead zone non linearity
with dead zone [−5, 5] and unitary slope outside this inter-
val. It is worth highlighting that functions g(ui) (∀ i) meet
Assumption 1-b) with d2 = maxi{2πfisi + ri} in Theorem 5.
Figures 2a and 2b describe the norm of the estimation error
‖x̃i‖ and the states xi, respectively; the first plot clearly shows
the finite time converge of the state estimation error. Similarly,
Figs. 2c and 2d describe the norm of the input estimation error
‖g̃i‖ and the input gi for all agents in the network. Each agent
is driven by an unbounded exogenous input; then, to ensure
the boundedness condition on the input estimate, required by
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Fig. 2: First Case Study. Simulation results for the first scenario where each agent is running the state and the input observers with exogenous
unbounded input. In particular, Figs. 2a and 2b depict the observer error ‖x̃i‖ and agent state xi evolution, respectively. Fig. 2c shows the
evolution of ‖g̃i‖ and Fig. 2d shows input g(ui) for each agent of the network.

0 0.5 1 1.5 2 2.5

Sec [s]

0

100

200

300

400
State Disagreement Norm

(a)

0 0.5 1 1.5 2 2.5

Sec [s]

-100

-50

0

50

100
State of all Agents

(b)

0 0.5 1 1.5 2 2.5

Sec [s]

0

10

20

30

40

50

60
Task function

(c)

0 0.5 1 1.5 2 2.5

Sec [s]

-600

-400

-200

0

200

400

600
Input of all Agents

(d)
Fig. 3: Second Case Study. Simulation results for the second scenario where each agent is running the state observer and the network exhibits a
cooperative behavior. In particular, Figs. 3a and 3b depict the observer error ‖x̃i‖ and agent state xi evolution, respectively. Fig. 3c shows the
evolution of log10(V + 1) with V defined in (139), and Fig. 3d shows input g(ui) for each agent of the network.

Theorem 4 for the finite-time convergence of the local state ob-
server, we are required to let each agent run the input observer.
In this regard, it can be notice that according to Theorem 5,
the boundedness of the first-order derivative of the input suf-
fices to guarantee the finite-time convergence of the local input
observes, which in turn suffices to guarantee the finite-time
convergence of the state observer.

B. Second case study: Cooperative behavior
In this case study, a stable cooperative behavior for large

scale network is designed. In particular, the scope of the control
input is described in the following.

Problem 3. Consider a multi-agent system composed of n
agents. Our objective is to define a control law such that the
following holds true:
• The multi-agent system must reach an equilibrium where

the agents’ state is within a predefined range, let’s say
[xmin, xmax];

• Each agent imust reach a final state xi which does not dif-
fer from the state of any of its k-hop neighbors xj ∈ N̄ 2

i ,
more than a given threshold ε, that is |xi − xj | ≤ ε,∀ i, j.

Remark 6. Problem 3 differs from classical distributed
consensus-based problem setting which can be solved by 1-hop
interaction rules as it requires k-hop neighborhood information
(in this case k = 2) usually not available to the agents.

To the aim, let us consider the error x̃i,j = xi − xj and
a smooth monotonically increasing function δi,j = δ(x̃i,j),
∀ i, j ≤ n, with the following properties:

Property 1. δi,j is anti-symmetric, i.e., δi,j = −δj,i;

Property 2. δi,j = 0 (δ′i,j = ∂δi,j/∂x̃i,j = 0) for
|x̃i,j | = |xi − xj | ≤ ε and δi,j 6= 0 (δ′i,j > 0) otherwise.

Moreover, let us introduce a leader agent with constant state
equal to xn+1 = (xmax + xmin)/2 and function δi,n+1 ∀ i

defined as δi,j but with ε = (xmax − xmin)/2.
An example of such function is

δi,j =

{
sign(x̃i,j) cosh(|x̃i,j | − ε), |x̃i,j | > ε

0, |x̃i,j | ≤ ε
(136)

We now provide a control law capable of solving Problem 3
under the assumption that each agent i knows the state of its
2-hop neighborhood. Then, we will show that the proposed
control law can still be used when exploiting the proposed
finite-time distributed observer.

Theorem 7. Let us consider a system of n agents with dynam-
ics as in (134), g(ui) = ui and whose communication graph
is undirected and connected. In the case the control input is
selected as:

ui = tanh(x3i )− γ tanh

∑
j∈N 2

i

δ′i,jδi,j

 (137)

with γ a scalar positive gain, then Problem 3 is solved.

Remark 7. Functions g(ui) (∀ i) meet Assumption 1-a), and
the control input (137) operates a feedback linearization to
cancel out the bounded non linear term − tanh(x3i ). We point
out that the choice of using a simple control approach was
made on purpose, since the scope of this case study is not to
solve a particular control problem but to present an application
of the devised framework. Thus, we preferred to keep the
control part as simple as possible for the sake of clarity.

Proof. To prove the theorem we notice that Problem 3 is solved
if δi,j = 0, ∀i ∈ {1, . . . , n} and j ∈ N 2

i ∪ {n+ 1}. In this
regard, by plugging (137) into the dynamics in (134), it is

ẋi = −γ tanh

∑
j∈N 2

i

δ′i,jδi,j

 (138)



Let us consider the following Lyapunov function

V =
1

2

∑
i

∑
j∈N 2

i

δ2i,j (139)

that is zero when all δi,j = 0, ∀ i ∈ {1, 2, . . . , N} and
∀ j ∈ N 2

i . In particular, the time derivative of (139) takes the
following form

V̇ = −γ
∑
i

∑
j∈N 2

i

δi,jδ
′
i,j(ẋi − ẋj)

= −γ
∑
i

∑
j∈N 2

i

δi,jδ
′
i,j

tanh

∑
k∈N 2

i

δ′i,kδi,k


− tanh

∑
k∈N 2

j

δ′j,kδj,k



(140)

By performing some manipulation the previous equation can
be re-written as

V̇ = −2γ
∑
i

∑
j∈N 2

i

δi,jδ
′
i,j

 tanh

∑
j∈N 2

i

δ′i,jδi,j


(141)

where the negative-semi definiteness simply follows from the
oddness of the tanh function. At this point, by the Lasalle’s
invariance principle, V is bounded with positive invariant set
D = {x ∈ IRdn | V̇ = 0}. By looking at the structure of V̇ , we
notice that V̇ = 0 implies∑

j∈N 2
i

δ′i,jδi,j = 0, ∀ i ∈ {1, . . . , n} (142)

Moreover, from Properties 1 and 2 it follows that δi,j is an
odd function, δ′i,j is non-negative and symmetric, and since
the communication graph is connected, from eq. (142) it fol-
lows that δi,j = 0, ∀ (i, j) ∈ N 2

i with i ∈ {1, . . . , n}. Thus
proving the statement.

Remark 8. Proof of Theorem 7 has been provided under the
assumption of the availability of the k-hop neighborhood state
as stated in Section VI. In order to demonstrate the closed-
loop stability when using the observed state x̂i (rather than the
actual one xi) in the control law given in eq. (137), the set-ISS
property with respect to the set A = [xmin, xmax] needs to
be shown as required by Theorem 6. Concerning this set-ISS
property, it naturally holds for the system at hand since the
adoption of the control law in eq. (137) leads to the following
dynamics

ẋ = −



tanh

∑
j∈N 2

1

δ′1,jδ1,j


...

tanh

 ∑
j∈N 2

n

δ′n,jδn,j




= φ(x, 0n) (143)

which is set-ISS with respect to the set A since V in eq. (139)
is a set-ISS Lyapunov function with respect to A ( [49], Theo-
rem 2)

VIII. CONCLUSION

A finite-time distributed observer to let each agent estimate
the k-hop neighborhood state by means of only local inter-
action has been described. Then, a closed loop analysis to
investigate under which conditions the stability of the multi-
agent dynamics can be achieved when closing the loop through
the state observer has been provided. The proposed framework
represents an effective solution to implement distributed con-
trol strategies in large-scale networked systems where due to
the locality of the phenomena each agent is required to retrieve
information concerning only a portion of the network to im-
plement its own control strategy. Future work will be focused
on extending the proposed framework to the case of switching
topologies. Moreover, networking phenomena, such as packet
drops and/or packets delays will be modelled and taken into
consideration in the convergence proof.
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