
Received: 22 May 2020 Revised: 30 July 2020 Accepted: 15 August 2020

DOI: 10.1002/mana.202000252

ORIG INAL PAPER

Primality of polyomino ideals by quadratic Gröbner basis

C. Mascia G. Rinaldo F. Romeo

Department of Mathematics, University of
Trento, Via Sommarive, 14, Povo, Trento
38123, Italy

Correspondence
C.Mascia,Department ofMathematics,
University of Trento,Via Sommarive, 14,
38123Povo (Trento), Italy.
Email: carla.mascia@unitn.it

Abstract
In this work, we provide a necessary and sufficient condition on a polyomino
ideal for having the set of inner 2-minors as graded reverse lexicographic
Gröbner basis, due to combinatorial properties of the polyomino itself. More-
over, we prove that when the latter holds the polyomino ideal coincides with the
lattice ideal associated to the polyomino, that is the polyomino ideal is prime. As
an application, we describe two new infinite families of prime polyominoes.
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1 INTRODUCTION

The ideals generated by a subset of 𝑡-minors of an 𝑚 × 𝑛 matrix of indeterminates are an intensively-studied class of
binomial ideals, due to their applications in algebraic statistics. Among these ideals, one finds the determinantal ideals,
see, for instance, [1] and its references to original articles, the ladder ideals introduced by Conca in [3], and the ideals
of adjacent minors introduced by Hoşten and Sullivan in [9]. In 2012, a new class of ideals generated by 2-minors were
defined by Qureshi in [12]: the polyomino ideals. They arise from two-dimensional objects obtained by joining edge by
edge unitary squares, called polyominoes. Over the last few years, algebraic properties of polyomino ideals have been
investigated, mainly exploiting the combinatorics of the underlying polyomino. One of the most challenging, and still
unsolved, algebraic problems on polyominoes is the classification of the prime ones. The fact that a binomial ideal is
a prime ideal if and only if it is a toric ideal explains the great interest in prime polyomino ideals. Several steps in this
direction have been done, but giving a complete characterization of the prime polyomino ideals does not seem to be an
easy task. In [6] and [13], the authors prove that simple polyominoes, namely without holes, are prime. In [8] and [14], a
family of prime polyominoes obtained by removing a convex polyomino by a given rectangle was showed. In amore recent
paper [10], it is demonstrated that if the polyomino  is prime, then it should have no zig-zag walks, and it is conjectured
that this is also a sufficient condition for the primality of  . This conjecture has been verified computationally for all the
polyominoes of rank≤ 14. Moreover, in the same work, the authors present a new infinite class of prime polyominoes: the
grid polyominoes.
Beside the primality, another interesting question concerns theGröbner basis of ideals generated by a subset of 𝑡-minors,

see [11, 16] and [2]. As regards polyomino ideals, in [12], the author provides a necessary and sufficient condition for the set
of inner 2-minors to be a reduced Gröbner basis of 𝐼 with respect to two fixed lexicographic monomial orders. Whereas,
in [7], Herzog, Qureshi and Shikama show that the ideal of a balanced polyomino has a quadratic Gröbner basis with
respect to any monomial ideal, that is the ideal is radical.
In this work, we combine the two above-mentioned questions: we study the primality of the polyomino ideals, by com-

puting their Gröbner basis with respect to particular graded reverse lexicographic monomial orders. In Section 2, we
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provide the basic definitions regarding polyominoes and their ideals of inner 2-minors. Moreover, we recall the definition
given in [12] of the lattice ideal associated to a polyomino  , and we show that it is the ideal quotient of the polyomino
ideal 𝐼 and a monomial. In Section 3, we define different graded reverse lexicographic monomial orders and, as in [12],
we give a necessary and sufficient condition on  for having the set of inner 2-minors as reduced Gröbner basis of 𝐼 (see
Proposition 3.2). Starting from thesemonomial orders, for any corner 𝑣 of the polyomino, we define newmonomial orders
<𝑣 such that the variable 𝑥𝑣 is the smallest one with respect to<𝑣. We determine when 𝐼 admits quadratic Gröbner basis
with respect to <𝑣 (see Proposition 3.4). In this case, we prove that the ideal is prime (see Theorem 3.5). In the final sec-
tion of this paper, we apply all the previous results on a class of polyominoes: the thin polyominoes (see Definition 4.1). We
exhibit necessary and sufficient conditions in terms of the geometry of the thin polyomino so that its ideal has a quadratic
Gröbner basis with respect to some graded reverse lexicographic monomial orders (see Theorem 4.4). As an application
we find two subclasses of thin polyominoes that are prime (see Corollary 4.6 and 4.10): one is that of thin cycles (see Defi-
nition 4.5) with inner intervals of length at least 3, and the other consists of polyominoes obtained from grid polyominoes
by the deletion of some cells, that we call subgrid polyominoes (see Definition 4.9).

2 PRELIMINARIES AND LATTICE IDEALS

Let 𝑎 = (𝑖, 𝑗), 𝑏 = (𝑘, 𝓁) ∈ ℕ2, with 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝓁, the set [𝑎, 𝑏] =
{
(𝑟, 𝑠) ∈ ℕ2 ∶ 𝑖 ≤ 𝑟 ≤ 𝑘 and 𝑗 ≤ 𝑠 ≤ 𝓁

}
is called an

interval of ℕ2. If 𝑖 < 𝑘 and 𝑗 < 𝓁, [𝑎, 𝑏] is called a proper interval, and the elements 𝑎, 𝑏, 𝑐, 𝑑 are called corners of [𝑎, 𝑏],
where 𝑐 = (𝑖, 𝓁) and 𝑑 = (𝑘, 𝑗). In particular, 𝑎, 𝑏 are called diagonal corners and 𝑐, 𝑑 anti-diagonal corners of [𝑎, 𝑏].
The corner 𝑎 (resp. 𝑐) is also called the left lower (resp. upper) corner of [𝑎, 𝑏], and 𝑑 (resp. 𝑏) is the right lower (resp.
upper) corner of [𝑎, 𝑏]. A proper interval of the form 𝐶 = [𝑎, 𝑎 + (1, 1)] is called a cell. Its vertices 𝑉(𝐶) are 𝑎, 𝑎 + (1, 0),
𝑎 + (0, 1), 𝑎 + (1, 1). The sets {𝑎, 𝑎 + (1, 0)}, {𝑎, 𝑎 + (0, 1)}, {𝑎 + (1, 0), 𝑎 + (1, 1)}, and {𝑎 + (0, 1), 𝑎 + (1, 1)} are called the
edges of C. Let  be a finite collection of cells of ℕ2, and let 𝐶 and 𝐷 be two cells of  . Then 𝐶 and 𝐷 are said to be con-
nected if there is a sequence of cells 𝐶 = 𝐶1, … , 𝐶𝑚 = 𝐷 of  such that 𝐶𝑖 ∩ 𝐶𝑖+1 is an edge of 𝐶𝑖 for 𝑖 = 1, … ,𝑚 − 1. In
addition, if 𝐶𝑖 ≠ 𝐶𝑗 for all 𝑖 ≠ 𝑗, then 𝐶1, … , 𝐶𝑚 is called a path (connecting 𝐶 and 𝐷). A collection of cells  is called a
polyomino if any two cells of  are connected. We denote by 𝑉() =

⋃
𝐶∈

𝑉(𝐶) the vertex set of  .
A polyomino  is said to be a subpolyomino of a polyomino  if each cell belonging to  belongs to  , and we write

 ⊂  . A proper interval [𝑎, 𝑏] is called an inner interval of  if all cells of [𝑎, 𝑏] belong to  . We say that a polyomino 
is simple if for any two cells 𝐶 and 𝐷 of ℕ2 not belonging to  , there exists a path 𝐶 = 𝐶1, … , 𝐶𝑚 = 𝐷 such that 𝐶𝑖 ∉  for
any 𝑖 = 1, … ,𝑚.
A finite collection of cells not in  is called a hole of  if any two cells in are connected through a path of cells in

, and is maximal with respect to the inclusion. Note that a hole of a polyomino  is itself a simple polyomino.
Let  be a polyomino. Let 𝕂 be a field and 𝑆 = 𝕂[𝑥𝑣 | 𝑣 ∈ 𝑉()]. The binomial 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 ∈ 𝑆 is called an inner

2-minor of  if [𝑎, 𝑏] is an inner interval of  , where 𝑐, 𝑑 are the anti-diagonal corners of [𝑎, 𝑏]. We denote by the set
of all inner 2-minors of  . The ideal 𝐼 ⊂ 𝑆 generated by is called the polyomino ideal of  .
We recall that given a lattice Λ ⊆ ℤ𝑚×𝑛, we attach a binomial ideal 𝐼Λ called the lattice ideal of Λ such that

𝑥𝐚 − 𝑥𝐛 ∈ 𝐼Λ ⇔ 𝐚 − 𝐛 ∈ Λ.

We say that a lattice Λ is saturated if for any 𝐚 ∈ ℤ𝑚×𝑛, 𝑐 ∈ ℤ such that 𝑐𝐚 ∈ Λ, we have 𝐚 ∈ Λ. It is known that Λ is
saturated if and only if 𝐼Λ is prime. Let  ⊆ [(1, 1), (𝑚, 𝑛)] be a polyomino. Let

 =
{
𝐞𝑖𝑗 ∶ 𝑖 ∈ {1, … ,𝑚}, 𝑗 ∈ {1, … , 𝑛}

}

be the canonical basis of ℤ𝑚×𝑛 and let  = {𝐶1, … , 𝐶𝑟} be the set of cells of  . Let 𝛼 ∶  ⟶ℤ𝑚×𝑛 be such that
𝛼(𝐶𝑘) = 𝐜𝑘 = 𝐞𝑖𝑗 + 𝐞𝑖+1𝑗+1 − 𝐞𝑖+1𝑗 − 𝐞𝑖𝑗+1, where (𝑖, 𝑗) is the lower left corner of the cell 𝐶𝑘.
It is known from [4] that an ideal generated by any set of adjacent 2-minors of a𝑚 × 𝑛matrix is a lattice ideal and that

its corresponding lattice is saturated. Hence, the lattice Λ = ⟨{𝐜𝑘}𝑘=1,…,𝑟⟩ is a saturated lattice, and 𝐼Λ is a prime ideal. In
addition, it is known from [12] that for a collection  of cells of ℕ2, 𝐼 is prime if and only if 𝐼 = 𝐼Λ. Moreover,
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TABLE 1 Pairs of arrows that induce the total orders

<𝟏 <𝟐 <𝟑 <𝟒 <𝟓 <𝟔 <𝟕 <𝟖

(↓ ,→) (↓ ,←) (↑ ,←) (↑ ,→) (← , ↑) (→ , ↑) (→ , ↓) (← , ↓)

F IGURE 1 A rectangular polyomino 

Lemma 2.1. Let  be a collection of cells of ℕ2, let 𝑆 be the polynomial ring associated to  . Then, there exists a monomial
𝑢 ∈ 𝑆 such that

𝐼Λ = (𝐼 ∶ 𝑢).

Proof. ⊇). Let 𝑢 ∈ 𝑆 be a monomial and let 𝑓 ∈ (𝐼 ∶ 𝑢). We have that 𝑢𝑓 ∈ 𝐼 ⊆ 𝐼Λ. Since 𝐼Λ is a prime ideal and 𝑢 ∉ 𝐼Λ,
then 𝑓 ∈ 𝐼Λ.
⊆). Let 𝑓𝐞 = 𝑥𝐞

+
− 𝑥𝐞

− be a generator of 𝐼Λ, with

𝐞 = 𝐞+ − 𝐞− =

𝑟∑
𝑘=1

𝜆𝑘𝐜𝑘 =

𝑟∑
𝑘=1

(
(𝜆𝑘𝐜𝑘)

+ − (𝜆𝑘𝐜𝑘)
−
)
∈ Λ,

where 𝜆𝑘 ∈ ℤ, 𝐯+ denotes the vector obtained from 𝐯 ∈ ℤ𝑚×𝑛 by replacing all negative components of 𝐯 by zero, and
𝐯− = −(𝐯 − 𝐯+).
Let

𝐯 =

𝑟∑
𝑘=1

(𝜆𝑘𝐜𝑘)
+ − 𝐞+ =

𝑟∑
𝑘=1

(𝜆𝑘𝐜𝑘)
− − 𝐞−.

We have that all the components of 𝐯 are nonnegative, as for any 𝑘 ∈ {1, … , 𝑟} one has
(
𝐜+
𝑘

)
𝑖𝑗
≥ (𝐜𝑘)𝑖𝑗 , for all 1 ≤ 𝑖 ≤ 𝑚

and 1 ≤ 𝑗 ≤ 𝑛. This implies that the monomial 𝑥𝐯 ∈ 𝑆 is such that

𝑥𝐯
(
𝑥𝐞

+
− 𝑥𝐞

−)
=

𝑟∏
𝑘=1

𝑥(𝜆𝑘𝐜𝑘)
+
−

𝑟∏
𝑘=1

𝑥(𝜆𝑘𝐜𝑘)
−
=

𝑟∑
𝑘=1

𝜇𝑘
(
𝑥𝐜

+
𝑘 − 𝑥𝐜

−
𝑘
)
∈ 𝐼 ,

for some 𝜇𝑘 ∈ 𝑆. If we set 𝑢 as the least common multiple of the elements 𝑥𝐯 induced by all the generators 𝑓𝐞 of 𝐼Λ the
assertion follows. □

3 QUADRATIC GRADED REVERSE LEXICOGRAPHIC GRÖBNER BASIS

Consider the total orders <𝑖 , with 𝑖 ∈ {1, … , 8}, on ℕ2 induced by the pairs of arrows displayed in Table 1.
Given 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2), the horizontal arrows refer to the first coordinates, 𝑎1 and 𝑏1, while the vertical ones

to the second coordinates, 𝑎2 and 𝑏2. Each arrow goes from the minimum to the maximum. For any pair of arrows, that is
for any total order, we first compare the coordinate given by the second arrow, and, if they are equal, then we compare the
coordinates given by the first arrow. For instance, 𝑎 <1 𝑏 if 𝑎1 < 𝑏1 or 𝑎1 = 𝑏1 and 𝑎2 > 𝑏2. That is, let 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉() be
as in Figure 1.
Then it holds 𝑎 <1 𝑏 <1 𝑐 <1 𝑑. The latter explains the order of the arrows, that is, we can order a set of vertices from

the minimum to the maximum by firstly following the direction given by the first arrow and then the direction given by
the second one. Similarly (𝑎1, 𝑎2) <5 (𝑏1, 𝑏2) if 𝑎2 < 𝑏2 or 𝑎2 = 𝑏2 and 𝑎1 > 𝑏1 and then one can recover all of the other
orders. In the next remark, we show the relations between the orders <𝑖 .
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F IGURE 2 The polyomino  ′: the reflection of  with respect to {𝑐, 𝑑}

F IGURE 3 The polyomino  ′′: the 180 degree rotation of 

Remark 3.1. Let  be the polyomino in Figure 1. Then with respect to the orders <1 induced by (↓ ,→), <2 induced by
(↓ ,←), <3 induced by (↑ ,←) we have

𝑎 <1 𝑏 <1 𝑐 <1 𝑑, 𝑐 <2 𝑑 <2 𝑎 <2 𝑏, 𝑑 <3 𝑐 <3 𝑏 <3 𝑎.

Let  ′ and  ′′ be respectively the reflection of  with respect to the line containing the edge {𝑐, 𝑑} (Figure 2) and the
180 degree rotation of  (Figure 3).
We observe that in  ′ we have 𝑐 <1 𝑑 <1 𝑎 <1 𝑏.
We observe that in  ′′ we have 𝑑 <1 𝑐 <1 𝑏 <1 𝑎. We conclude that the order <2 it is equal to the order <1 up to a

reflection of the polyomino, while the order <3 is equal to the order <1 up to a 180 degree rotation of the polyomino.
Similarly the other relations follow.

The total orders <𝑖 , with 𝑖 ∈ {1, … , 8}, on the vertices of  induce in a natural way the graded reverse lexicographic
monomial orders <𝑖

grevlex
, with 𝑖 ∈ {1, … , 8}, on 𝑆 = 𝕂[𝑥𝑣 | 𝑣 ∈ 𝑉()], respectively.

As in [12, Theorem 4.1], the next proposition gives a necessary and sufficient condition on  for having as quadratic
reduced Gröbner basis of 𝐼 .
From now on, we set  = {1, 3, 5, 7} and  = {2, 4, 6, 8}.

Proposition 3.2. Let be a polyomino. forms a reduced Gröbner basis of 𝐼 with respect to<𝑖grevlex , for 𝑖 ∈ , if and only
if for any two intervals [𝑎, 𝑏] and [𝑏, 𝑒] of  , at least one interval between [𝑎, 𝑓] and [𝑎, 𝑔] is an inner interval of  , where 𝑓
and 𝑔 are the anti-diagonal corners of [𝑏, 𝑒]. Similarly, forms a reduced Gröbner basis of 𝐼 with respect to <𝑖

grevlex
, for

𝑖 ∈  , if and only if for any two inner intervals [𝑎, 𝑏] and [𝑒, 𝑓] of  , with 𝑑 anti-diagonal corner of both the inner intervals,
either 𝑎, 𝑒 or 𝑏, 𝑓 are anti-diagonal corners of an inner interval of  .

Proof. We are going to prove the statement only for<1
grevlex

, then, by similar arguments and by Remark 3.1, the other cases
follow. The others follow in a similar way. The set forms a reduced Gröbner basis of 𝐼 with respect to <1

grevlex
if and

only if all 𝑆-polynomials of inner 2-minors of 𝐼 reduce to 0. Let 𝑓, 𝑔 ∈, where 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 is associated to the
inner interval [𝑎, 𝑏] of  and 𝑔 = 𝑥𝑝𝑥𝑞 − 𝑥𝑟𝑥𝑠 is associated to the inner interval [𝑝, 𝑞] of  . In the following, we denote
by 𝑆 the 𝑆-polynomial between 𝑓 and 𝑔 and by in(ℎ) the leading monomial of a polynomial ℎ. We consider the non-trivial
cases when gcd(in(𝑓), in(𝑔)) ≠ 1. Moreover, if one of the inner intervals, namely [𝑎, 𝑏], is contained in the second one,
namely [𝑝, 𝑞], 𝑆 reduces to 0 since the polyomino ideal is generated by all inner 2-minors. In the following, denote by <
the total order <1 on the vertices of  . Without loss of generality, let 𝑎 ≤ 𝑝. Therefore, we have to consider the following
cases: 𝑎 = 𝑝, 𝑏 = 𝑞, and 𝑏 = 𝑝 (Figure 4).
Let 𝑎 = 𝑝, that is 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and 𝑔 = 𝑥𝑎𝑥𝑞 − 𝑥𝑟𝑥𝑠, and assume 𝑟 < 𝑐 < 𝑎 < 𝑞 < 𝑠 < 𝑏 < 𝑑 as in Figure 5. We have

𝑆 = 𝑥𝑞𝑥𝑐𝑥𝑑 − 𝑥𝑏𝑥𝑟𝑥𝑠 and in(𝑆) = 𝑥𝑞𝑥𝑐𝑥𝑑. Since in
(
𝑓𝑐,𝑞

)
= 𝑥𝑐𝑥𝑞, we get

𝑆 = 𝑥𝑑(𝑥𝑐𝑥𝑞 − 𝑥𝑟𝑥𝑒) − 𝑥𝑟(𝑥𝑠𝑥𝑏 − 𝑥𝑒𝑥𝑑),

that is 𝑆 reduces to 0 with respect to.
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(A) (B) (C)

F IGURE 4 Cases to consider

F IGURE 5 Case 𝑎 = 𝑝

Let 𝑏 = 𝑞, and assume 𝑐 < 𝑎 < 𝑟 < 𝑝 < 𝑏 < 𝑑 < 𝑠 as in Figure 3. We have 𝑆 = 𝑥𝑎𝑥𝑟𝑥𝑠 − 𝑥𝑐𝑥𝑑𝑥𝑝 and in(𝑆) = 𝑥𝑎𝑥𝑟𝑥𝑠.
Since in(𝑓𝑎,𝑟) = 𝑥𝑎𝑥𝑟, we get

𝑆 = 𝑥𝑠(𝑥𝑎𝑥𝑟 − 𝑥𝑐𝑥𝑒) − 𝑥𝑐(𝑥𝑝𝑥𝑑 − 𝑥𝑒𝑥𝑠),

that is 𝑆 reduces to 0 with respect to.
Let 𝑏 = 𝑝, and assume 𝑐 < 𝑎 < 𝑟 < 𝑏 < 𝑑 < 𝑞 < 𝑠 as in Figure 3. We have 𝑆 = 𝑥𝑎𝑥𝑟𝑥𝑠 − 𝑥𝑞𝑥𝑐𝑥𝑑 and in(𝑆) = 𝑥𝑎𝑥𝑟𝑥𝑠. If

neither [𝑎, 𝑠] nor [𝑎, 𝑟] is an inner interval of  , then 𝑆 does not reduce to 0 with respect to and the Gröbner basis is
not quadratic. Furthermore, if [𝑎, 𝑠] is an inner interval of  , since in(𝑓𝑎,𝑠) = 𝑥𝑎𝑥𝑠, we get

𝑆 = 𝑥𝑟(𝑥𝑎𝑥𝑠 − 𝑥𝑐𝑥𝑡) − 𝑥𝑐(𝑥𝑑𝑥𝑞 − 𝑥𝑟𝑥𝑡).

If [𝑎, 𝑟] is an inner interval of  , since in(𝑓𝑎,𝑟) = 𝑥𝑎𝑥𝑟, we get

𝑆 = 𝑥𝑠(𝑥𝑎𝑥𝑟 − 𝑥𝑒𝑥𝑑) − 𝑥𝑑(𝑥𝑐𝑥𝑞 − 𝑥𝑒𝑥𝑠).

It shows that in both situations 𝑆 reduces to 0 with respect to. The latter shows that 𝑆 reduces to 0 with respect to
if and only if either [𝑎, 𝑠] or [𝑎, 𝑟] is an inner interval of  and the thesis follows. □

Let 𝑉() = {𝑣1, … , 𝑣𝑛}. Given a monomial order < such that we have

𝑥𝑣1 < 𝑥𝑣2 < ⋯ < 𝑥𝑣𝑛 ,

we define by <𝑣, with 𝑣 = 𝑣𝑘 ∈ 𝑉(), the following monomial order:

𝑥𝑣𝑘 < 𝑥𝑣𝑘+1 < ⋯ < 𝑥𝑣𝑛 < 𝑥𝑣1 < 𝑥𝑣2 < ⋯ < 𝑥𝑣𝑘−1 .

From now on, we will denote
(
<𝑖
grevlex

)
𝑣
by <𝑖𝑣, for any 𝑖 ∈ {1, … , 8}.

Definition 3.3. Let  be a polyomino and let 𝑣 ∈ 𝑉(). We say that 𝑣 satisfies the condition 𝜋1 if it fulfils at least one of
the following conditions:
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TABLE 2 Conditions 𝜋𝑖 , for 𝑖 = 1, … , 8

(I) There exist two inner intervals 𝐼 = [𝑎, 𝑏] and 𝐽 = [𝑏, 𝑞] of , with 𝑣 upper left corner of 𝐼, and 𝑠 the lower right corner
of 𝐽, such that [𝑣, 𝑞] is inner interval of  , whereas the interval [𝑎, 𝑠] is not (see Table 2, Case 𝜋1 (I)).

(II) There exist two inner intervals 𝐾 = [𝑎, 𝑏] and 𝐿 = [𝑝, 𝑞], with 𝑣 lower right corner of 𝐾 and upper left corner of 𝐿,
such that the interval having 𝑏 and 𝑞 as anti-diagonal corners is inner interval of  , whereas the interval having 𝑎
and 𝑝 as anti-diagonal corners is not (see Table 2, Case 𝜋1 (II)).

In a similar way, by Remark 3.1 and by using suitable rotations and/or reflections, one can define 𝑣 satisfying the con-
dition 𝜋𝑖 , for 𝑖 ∈ {2, … , 8}, if it fulfils at least one of the cases (I) and (II) displayed in Table 2.

Proposition 3.4. Let  be a polyomino such that 𝐼 has as reduced Gröbner basis with respect to <𝑖
grevlex

, with 𝑖 ∈ 

(𝑖 ∈  , respectively). If 𝑣 ∈ 𝑉() does not satisfy 𝜋𝑘 for some 𝑘 ∈  (𝑘 ∈  , respectively), then forms a reduced Gröbner
basis of 𝐼 with respect to <𝑘𝑣 .

Proof. Assume that forms a reduced Gröbner basis of 𝐼 with respect to <𝑖grevlex , with 𝑖 ∈ . Let 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and
𝑔 = 𝑥𝑝𝑥𝑞 − 𝑥𝑟𝑥𝑠 be associated to the inner interval [𝑎, 𝑏] and [𝑝, 𝑞] of  , respectively. Let 𝑣 ∈ 𝑉(). We have to show that
for each pair of inner 2-minors, 𝑓 and 𝑔, the corresponding 𝑆-polynomial reduces to 0 with respect to a fixed monomial
order <𝑖𝑣, with 𝑖 ∈ . In the following, we denote by 𝑆 the 𝑆-polynomial between 𝑓 and 𝑔, by in(ℎ) the leading monomial
of a polynomial ℎ, and by 𝑓𝑚,𝑛 the inner 2-minor associated to the inner interval [𝑚, 𝑛] of  .
We leave to the reader the trivial cases {𝑎, 𝑏, 𝑐, 𝑑} ∩ {𝑝, 𝑞, 𝑟, 𝑠} = ∅, and |{𝑎, 𝑏, 𝑐, 𝑑} ∩ {𝑝, 𝑞, 𝑟, 𝑠}| = 2 where 𝑆 reduces to

0 since the polyomino ideal is generated by all inner 2-minors.
Note that if, for all vertices 𝑤 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟, 𝑠} and a monomial order <𝑖

grevlex
, for some 𝑖 ∈ , it holds 𝑥𝑤 <𝑖𝑣 𝑥𝑣 or

𝑥𝑣 <
𝑖
𝑣 𝑥𝑤, then 𝑆 reduces to 0 with respect to <𝑖𝑣, since it reduces to 0 with respect to <𝑖grevlex .

If one of the inner intervals, namely [𝑎, 𝑏], is contained in the second one, namely [𝑝, 𝑞], 𝑆 reduces to 0 since the
polyomino ideal is generated by all inner 2-minors. In the following, denote by < the total order <1 on the vertices of  .
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Without loss of generality, let 𝑎 ≤ 𝑝. Therefore, we have to consider the following cases:

𝑎 = 𝑝, 𝑏, 𝑑 ∈ {𝑝, 𝑞, 𝑟, 𝑠}, 𝑐 ∈ {𝑝, 𝑟}.

If 𝑣 does not satisfy the condition 𝜋𝑘, for some 𝑘 ∈ , we fix the monomial order <𝑘𝑣 .
Assume 𝑘 = 1.
Let 𝑎 = 𝑝, that is 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and 𝑔 = 𝑥𝑎𝑥𝑞 − 𝑥𝑟𝑥𝑠, and 𝑟 < 𝑐 < 𝑎 < 𝑞 < 𝑠 < 𝑏 < 𝑑 as in Figure 5.
We start by observing that if 𝑟 < 𝑣 ≤ 𝑏, then gcd(in(𝑓), in(𝑔)) = 1. In the other cases, we have 𝑆 = 𝑥𝑟𝑥𝑠𝑥𝑏 − 𝑥𝑐𝑥𝑑𝑥𝑞. If

𝑏 < 𝑣 ≤ 𝑑, then in(𝑆)=𝑥𝑟𝑥𝑠𝑥𝑏. Since in(𝑓𝑠,𝑏) = 𝑥𝑠𝑥𝑏, then

𝑆 = 𝑥𝑟(𝑥𝑠𝑥𝑏 − 𝑥𝑒𝑥𝑑) − 𝑥𝑑(𝑥𝑐𝑥𝑞 − 𝑥𝑟𝑥𝑒),

that is 𝑆 reduces to 0 with respect to the inner 2-minors 𝑓𝑠,𝑏 and 𝑓𝑐,𝑞. If 𝑣 = 𝑟, then in(𝑆) = 𝑥𝑐𝑥𝑑𝑥𝑞. Since in(𝑓𝑐,𝑞) = 𝑥𝑐𝑥𝑞,
then

𝑆 = −𝑥𝑑(𝑥𝑐𝑥𝑞 − 𝑥𝑟𝑥𝑒) + 𝑥𝑟(𝑥𝑠𝑥𝑏 − 𝑥𝑒𝑥𝑑),

that is 𝑆 reduces to 0 with respect to the inner 2-minors 𝑓𝑐,𝑞 and 𝑓𝑠,𝑏.
Let 𝑏 = 𝑝, that is 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and 𝑔 = 𝑥𝑏𝑥𝑞 − 𝑥𝑟𝑥𝑠, and𝑐 < 𝑎 < 𝑟 < 𝑏 < 𝑑 < 𝑞 < 𝑠, as in Figure 6.
If 𝑐 < 𝑣 ≤ 𝑞, then gcd(in(𝑓), in(𝑔)) = 1. In the other cases, we have 𝑆 = 𝑥𝑎𝑥𝑟𝑥𝑠 − 𝑥𝑞𝑥𝑐𝑥𝑑. If 𝑞 < 𝑣 ≤ 𝑠, then

in(𝑆)=𝑥𝑞𝑥𝑐𝑥𝑑. By hypothesis,  forms a reduced Gröbner basis of 𝐼 with respect to <𝑖
grevlex

with 𝑖 ∈ , hence, from
Proposition 3.2, either [𝑐, 𝑞] or [𝑑, 𝑞] is an inner interval of  , with in(𝑓𝑐,𝑞) = 𝑥𝑐𝑥𝑞 and in(𝑓𝑑,𝑞) = 𝑥𝑑𝑥𝑞, and then

𝑆 = 𝑥𝑑(𝑥𝑐𝑥𝑞 − 𝑥𝑒𝑥𝑠) − 𝑥𝑠(𝑥𝑎𝑥𝑟 − 𝑥𝑒𝑥𝑑)

or

𝑆 = −𝑥𝑐(𝑥𝑑𝑥𝑞 − 𝑥𝑟𝑥𝑡) + 𝑥𝑟(𝑥𝑎𝑥𝑠 − 𝑥𝑐𝑥𝑡),

that is 𝑆 reduces to 0 with respect to the inner 2-minors either 𝑓𝑐,𝑞 and 𝑓𝑎,𝑟 or 𝑓𝑑,𝑞 and 𝑓𝑎,𝑠. If 𝑣 = 𝑐, then in(𝑆) = 𝑥𝑎𝑥𝑟𝑥𝑠.
By hypothesis, either [𝑎, 𝑟] or [𝑎, 𝑠] is an inner interval of  , with in(𝑓𝑎,𝑟) = 𝑥𝑒𝑥𝑑 and in(𝑓𝑎,𝑠) = 𝑥𝑎𝑥𝑠. If [𝑎, 𝑟] is an inner
interval of  , but [𝑎, 𝑠] is not, then 𝑣 satisfies the condition 𝜋1, so we have not to consider this case. Whereas, if [𝑎, 𝑠] is
an inner interval, since in(𝑓𝑎,𝑠) = 𝑥𝑎𝑥𝑠, then

𝑆 = 𝑥𝑟(𝑥𝑎𝑥𝑠 − 𝑥𝑐𝑥𝑡) − 𝑥𝑐(𝑥𝑑𝑥𝑞 − 𝑥𝑟𝑥𝑡),

it follows that 𝑆 reduces to 0.
Note that when 𝑣 = 𝑐, if [𝑎, 𝑟] is an inner interval of  , but [𝑎, 𝑠] is not, that is 𝑣 satisfies 𝜋1, in particular the condition

𝜋1 (I), then 𝑆 does not reduce to 0 with respect to  and <1𝑣. In fact, in(𝑆) = 𝑥𝑎𝑥𝑟𝑥𝑠, but the monomials 𝑥𝑎𝑥𝑟, 𝑥𝑎𝑥𝑠,
and 𝑥𝑟𝑥𝑠 are not leading monomials of any inner 2-minor of  . This situation justifies the hypothesis 𝑣 not satisfying the
condition 𝜋1.
Let 𝑏 = 𝑟, that is that is 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and 𝑔 = 𝑥𝑝𝑥𝑞 − 𝑥𝑏𝑥𝑠. We have to distinguish two different situations: 𝑝 < 𝑑

(see Figure 7 (A)) or 𝑝 > 𝑑 (see Figure 7 (B)).
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(A) (B)

F IGURE 7 Case 𝑏 = 𝑟

F IGURE 8 Case 𝑑 = 𝑞

Assume 𝑝 < 𝑑, then 𝑐 < 𝑎 < 𝑏 < 𝑝 < 𝑑 < 𝑞 < 𝑠, as in Figure 7 (A). If 𝑐 ≤ 𝑣 ≤ 𝑏 or 𝑞 < 𝑣 ≤ 𝑠, then gcd(in(𝑓), in(𝑔)) = 1.
In the other cases, 𝑆 = 𝑥𝑎𝑥𝑝𝑥𝑞 − 𝑥𝑐𝑥𝑑𝑥𝑠. If 𝑏 < 𝑣 ≤ 𝑝 or 𝑑 < 𝑣 ≤ 𝑞, then in(𝑆) = 𝑥𝑐𝑥𝑑𝑥𝑠 and in(𝑓𝑒,𝑞) = 𝑥𝑐𝑥𝑠. If 𝑝 < 𝑣 ≤ 𝑑,
then in(𝑆) = 𝑥𝑎𝑥𝑝𝑥𝑞 and in(𝑓𝑎,𝑝) = 𝑥𝑎𝑥𝑝. Therefore,

𝑆 = 𝑥𝑑(𝑥𝑒𝑥𝑞 − 𝑥𝑐𝑥𝑠) + 𝑥𝑞(𝑥𝑎𝑥𝑝 − 𝑥𝑒𝑥𝑑),

that is 𝑆 reduces to 0 in all of these cases.
Assume 𝑝 > 𝑑, then 𝑐 < 𝑎 < 𝑏 < 𝑑 < 𝑝 < 𝑞 < 𝑠, as in Figure 7 (B). If 𝑐 ≤ 𝑣 ≤ 𝑏 or 𝑞 < 𝑣 ≤ 𝑠, then gcd(in(𝑓), in(𝑔)) = 1.

In the other cases, we have 𝑆 = 𝑥𝑎𝑥𝑝𝑥𝑞 − 𝑥𝑐𝑥𝑑𝑥𝑠. If 𝑏 < 𝑣 ≤ 𝑑, then in(𝑆) = 𝑥𝑎𝑥𝑝𝑥𝑞. By hypothesis, 𝑣 does not satisfy the
condition 𝜋1, hence [𝑓, 𝑑] is an inner interval of  . Since in(𝑓𝑓,𝑑) = 𝑥𝑎𝑥𝑝, then

𝑆 = −𝑥𝑞(𝑥𝑓𝑥𝑑 − 𝑥𝑎𝑥𝑝) + 𝑥𝑑(𝑥𝑓𝑥𝑞 − 𝑥𝑐𝑥𝑠),

that is 𝑆 reduces to 0. If 𝑑 < 𝑣 ≤ 𝑞, then in(𝑆) = 𝑥𝑐𝑥𝑑𝑥𝑠. Since in(𝑓𝑝,𝑒) = 𝑥𝑑𝑥𝑠, it follows

𝑆 = 𝑥𝑐(𝑥𝑝𝑥𝑒 − 𝑥𝑑𝑥𝑠) + 𝑥𝑝(𝑥𝑎𝑥𝑞 − 𝑥𝑐𝑥𝑒),

that is 𝑆 reduces to 0.
Note that when 𝑏 < 𝑣 ≤ 𝑑, if [𝑓, 𝑑] is not an inner interval of  , then 𝑣 satisfies 𝜋1, in particular the condition 𝜋1 (II).

In this case, 𝑆 does not reduce to 0 with respect to  and <1𝑣. In fact, in(𝑆) = 𝑥𝑎𝑥𝑝𝑥𝑞, but the monomials 𝑥𝑎𝑥𝑝, 𝑥𝑎𝑥𝑞,
and 𝑥𝑝𝑥𝑞 are not leading monomials of any inner 2-minor of  . This situation justifies, once again, the hypothesis 𝑣 not
satisfying the condition 𝜋1.
Let 𝑑 = 𝑞, that is 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and 𝑔 = 𝑥𝑝𝑥𝑑 − 𝑥𝑟𝑥𝑠, and 𝑐 < 𝑎 < 𝑟 < 𝑝 < 𝑏 < 𝑑 < 𝑠, as showed in Figure 8.
If either 𝑣 = 𝑐 or 𝑟 < 𝑣 ≤ 𝑠, then gcd(in(𝑓), in(𝑔)) = 1. In the other cases, we have 𝑆 = 𝑥𝑎𝑥𝑏𝑥𝑝 − 𝑥𝑐𝑥𝑟𝑥𝑠. If 𝑐 < 𝑣 ≤ 𝑎,

then in(𝑆) = 𝑥𝑐𝑥𝑟𝑥𝑠. Since in(𝑓𝑐,𝑟) = 𝑥𝑐𝑥𝑟, then

𝑆 = 𝑥𝑠(𝑥𝑎𝑥𝑒 − 𝑥𝑐𝑥𝑟) + 𝑥𝑎(𝑥𝑝𝑥𝑏 − 𝑥𝑠𝑥𝑒),

that is 𝑆 reduces to 0. If 𝑎 < 𝑣 ≤ 𝑟, then in(𝑆) = 𝑥𝑎𝑥𝑏𝑥𝑝. By hypothesis, 𝑣 does not satisfy 𝜋1, that is [𝑓, 𝑟] is an inner
interval of  . Since in

(
𝑓𝑓,𝑟

)
= 𝑥𝑎𝑥𝑝, then

𝑆 = −𝑥𝑏
(
𝑥𝑓𝑥𝑟 − 𝑥𝑎𝑥𝑝

)
+ 𝑥𝑟

(
𝑥𝑓𝑥𝑏 − 𝑥𝑐𝑥𝑠

)
,
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that is 𝑆 reduces to 0.
Let 𝑐 = 𝑟, that is 𝑓 = 𝑥𝑎𝑥𝑏 − 𝑥𝑐𝑥𝑑 and 𝑔 = 𝑥𝑝𝑥𝑞 − 𝑥𝑐𝑥𝑠, and 𝑐 < 𝑝 < 𝑎 < 𝑏 < 𝑑 < 𝑞 < 𝑠, as showed in Figure 9.
If either 𝑣 = 𝑐 or 𝑏 < 𝑣 ≤ 𝑠 , then gcd(in(𝑓), in(𝑔)) = 1. In the other cases, we have 𝑆 = 𝑥𝑎𝑥𝑏𝑥𝑠 − 𝑥𝑑𝑥𝑝𝑥𝑞. If 𝑐 < 𝑣 ≤ 𝑝,

in(𝑆) = 𝑥𝑎𝑥𝑏𝑥𝑠. Since 𝑣 does not satisfy 𝜋1, then [𝑎, 𝑠] is an inner interval of  and in(𝑓𝑎,𝑠) = 𝑥𝑎𝑥𝑠. Therefore,

𝑆 = 𝑥𝑏
(
𝑥𝑎𝑥𝑠 − 𝑥𝑝𝑥𝑓

)
− 𝑥𝑝

(
𝑥𝑑𝑥𝑞 − 𝑥𝑏𝑥𝑓

)
,

that is 𝑆 reduces to 0. If 𝑝 < 𝑣 ≤ 𝑏, then in(𝑆) = 𝑥𝑑𝑥𝑝𝑥𝑞 and in(𝑓𝑎,𝑒) = 𝑥𝑝𝑥𝑑. Therefore,

𝑆 = 𝑥𝑞(𝑥𝑎𝑥𝑒 − 𝑥𝑝𝑥𝑑) − 𝑥𝑎(𝑥𝑒𝑥𝑞 − 𝑥𝑏𝑥𝑠),

that is 𝑆 reduces to 0. For the sake of brevity, we leave to readers to check, in a similar way, that if 𝑏 ∈ {𝑞, 𝑠}, 𝑑 ∈ {𝑝, 𝑟, 𝑠},
and 𝑐 = 𝑝, then all the 𝑆-polynomials reduce to 0. Moreover, for no one of the corners 𝑣 in these cases it needs to require
the hypothesis that 𝑣 does not satisfy the condition 𝜋1.
We have proved that when 𝑘 = 1, all and only the cases in which 𝑆 does not reduce to zero with respect to and <1𝑣

are when 𝑣 satisfies 𝜋1. Thanks to Remark 3.1. and Definition 3.3, for any 𝑘 ∈ , all and only the cases in which 𝑆 does
not reduce to zero with respect to <𝑘𝑣 and are when 𝑣 satisfies 𝜋𝑘. Then, the statement holds for any 𝑘 ∈  and 𝑣 not
satisfying 𝜋𝑘. □

We now prove the main theorem of this section.

Theorem 3.5. Let  be a polyomino such that 𝐼 has as reduced Gröbner basis of 𝐼 with respect to <𝑖grevlex , with 𝑖 ∈ 

(𝑖 ∈  , respectively). If, for all 𝑣 ∈ 𝑉(), there exists a 𝑘𝑣 ∈  (𝑘𝑣 ∈  , respectively) such that 𝑣 does not satisfy 𝜋𝑘𝑣 , then

1.  forms a reduced Gröbner basis with respect to <𝑘𝑣𝑣 , for all 𝑣 ∈ 𝑉();
2. 𝐼 is prime.

Proof.

(1) It is an immediate consequence of Proposition 3.4.
(2) Fix 𝑣 ∈ 𝑉(). By (1), let <𝑣 denote the monomial order for which  forms a reduced Gröbner basis of 𝐼 . By [15,

Lemma 12.1], the reduced Gröbner basis of (𝐼 ∶ 𝑥𝑣) with respect to <𝑣 is given by

{𝑓 ∈ ∣ 𝑥𝑣 does not divide 𝑓} ∪ {𝑓∕𝑥𝑣 ∣ 𝑓 ∈ and 𝑥𝑣 divides 𝑓}.

Since all 𝑓 ∈ are not divisible by 𝑥𝑣, the reduced Gröbner basis of (𝐼 ∶ 𝑥𝑣) with respect to <𝑣 is . Therefore
(𝐼 ∶ 𝑥𝑣) = 𝐼 , for all 𝑥𝑣 ∈ 𝑉(). It follows that (𝐼 ∶ 𝑢) = 𝐼 for any monomial 𝑢 ∈ 𝑆. By Lemma 2.1, we have that
there exists a monomial 𝑢 ∈ 𝑆 such that 𝐼Λ = (𝐼 ∶ 𝑢). Then

𝐼Λ = (𝐼 ∶ 𝑢) = 𝐼 .
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It follows that 𝐼 coincides with the lattice ideal 𝐼Λ, which is prime. Therefore, 𝐼 is a prime ideal, as well. □

4 THIN POLYOMINOES

In this section, we introduce the class of thin polyominoes and we rephrase the geometric condition for the quadratic
Gröbner basis of 𝐼 in Proposition 3.2 in terms of some subpolyominoes of the thin polyomino  . Thanks to the above
interpretation, we find two new classes of thin polyominoes having a prime polyomino ideal: the thin cycle with no max-
imal inner interval of length 2 and the subgrid polyominoes.

Definition 4.1. Let  be a polyomino. We say that  is thin if  does not have the polyomino  in Figure 10 as a
subpolyomino.

Theorem 4.2. Let  be a thin polyomino such that forms a reduced Gröbner basis of 𝐼 with respect to <𝑖grevlex for 𝑖 ∈ 

(for 𝑖 ∈  , respectively). Then, for any 𝑣 ∈ 𝑉(), there exists 𝑘 ∈  (𝑘 ∈  , respectively) such that forms a reducedGröbner
basis of 𝐼 with respect to <𝑘𝑣 .

Proof. Assume that  forms a reduced Gröbner basis of 𝐼 with respect to <𝑖
grevlex

, with 𝑖 ∈ . Let 𝑣 ∈ 𝑉(). From
Proposition 3.4 it suffices to show that there exists 𝑘 ∈  such that 𝑣 does not satisfy 𝜋𝑘.
We claim that 𝑣 can not satisfy simultaneously 𝜋1 and 𝜋3. In fact, if 𝑣 satisfies simultaneously 𝜋1 and 𝜋3, then there

exist four cells 𝐶,𝐷, 𝐸, 𝐹 of  such that 𝐶 ∩ 𝐷 ∩ 𝐸 ∩ 𝐹 = {𝑣}. From Table 2, if 𝑣 satisfies 𝜋1 then there exist two cells 𝐶,𝐷
of  such that 𝑣 is simultaneously the lower left corner of 𝐶 and the upper left corner of 𝐷, while if  satisfies 𝜋3 then
there exist two cells 𝐸, 𝐹 of  such that 𝑣 is simultaneously the lower right corner of 𝐸 and the upper right corner of 𝐹.
Since 𝑣 satisfies simultaneously 𝜋1 and 𝜋3, the cells 𝐶,𝐷, 𝐸, 𝐹 are the ones desired. This implies that the polyomino  in
Figure 10 is a subpolyomino of  and then  is not thin, which is a contradiction. It follows that there exists at least a
𝑘 ∈  such that 𝑣 does not satisfy 𝜋𝑘, as desired. □

Corollary 4.3. Let  be a thin polyomino such that  forms a reduced Gröbner basis of 𝐼 with respect to <𝑖
grevlex

for
𝑖 ∈ {1, … , 8}. Then 𝐼 is prime.

Proof. By Theorem4.2, for any 𝑣 ∈ 𝑉(), forms a reducedGröbner basis of 𝐼 with respect to<𝑘𝑣 , for some 𝑘 ∈ {1, … , 8}.
By Theorem 3.5, it follows that 𝐼 is prime. □

Theorem 4.4. Let  be a thin polyomino. The following facts are equivalent:

1.  forms a reduced Gröbner basis of 𝐼 with respect to <𝑖grevlex for 𝑖 ∈  (𝑖 ∈  , respectively);

2. there are no cells 𝐶,𝐷 ∉  and 𝐸, 𝐹 ∈  such that 𝐶 ∩ 𝐷 ∩ 𝐸 ∩ 𝐹 ≠ ∅ as in Figure 11 (a) (Figure 11(b), respectively) and
the polyominoes in Figure 12 (i) and (ii) (in Figure 12 (iii) and (iv), respectively) are not subpolyominoes of  .

Proof. We prove the equivalent statements for <𝑖
grevlex

, with 𝑖 ∈ . The case <𝑖
grevlex

for 𝑖 ∈  can be done similarly.
(1)⇒ (2). Firstly, let 𝐸, 𝐹 be two cells of  as in Figure 11(a). Since, by hypothesis, is a quadratic Gröbner basis, by

Proposition 3.2, at least one cell between 𝐶 and 𝐷 must be a cell of 𝑃. That is the situation displayed in Figure 11(a) is not
possible. Secondly, assume, by contradiction, that the polyominoes in Figure 12(i) and (ii) are subpolyominoes of  . Then
we consider the inner intervals [𝑎, 𝑏] and [𝑏, 𝑒] of  as in Figure 13.
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(A) (B)

F IGURE 11 Configurations of cells to avoid for having quadratic Gröbner bases

F IGURE 1 2 Subpolyominoes to avoid for having quadratic Gröbner bases

F IGURE 13 Possible positions for the inner intervals [𝑎, 𝑏] and [𝑏, 𝑒] of 

By Proposition 3.2, at least one between [𝑎, 𝑔] and [𝑎, 𝑓] is an inner interval of  , where 𝑓 and 𝑔 are the anti-diagonal
corners of [𝑏, 𝑒]. In both cases, we get a polyomino that is not thin, which is a contradiction.
(2)⇒ (1). Assume, by contradiction, that does not form a quadratic Gröbner basis of 𝐼 with respect to <𝑖

grevlex
for

𝑖 ∈ . According to Proposition 2.1, there exist two inner intervals [𝑎, 𝑏] and [𝑏, 𝑒] of  , where [𝑎, 𝑏] has anti-diagonal
corners 𝑐 and 𝑑, and [𝑏, 𝑒] has anti-diagonal corners 𝑓 and 𝑔, such that neither [𝑎, 𝑓] nor [𝑎, 𝑔] is an inner interval of  .
Let 𝐸 and 𝐹 be respectively cells of [𝑎, 𝑏] and [𝑏, 𝑒] such that 𝐸 ∩ 𝐹 = {𝑏}. Let 𝐶 and 𝐷 be respectively cells of [𝑎, 𝑓] and
[𝑎, 𝑔] such that 𝐸 ∩ 𝐶 ∩ 𝐷 ∩ 𝐹 = {𝑏}. Since  is thin, the cells 𝐶 and 𝐷 can not simultaneously be cells of  . If neither 𝐶
nor 𝐷 is a cell of  , then 𝐶,𝐷, 𝐸, and 𝐹 are cells as in Figure 11(a) and this is a contradiction. Assume, without loss of
generality, that 𝐶 ∉  , but 𝐷 ∈  . Since [𝑎, 𝑔] is not an inner interval of  , then 𝑑 and 𝑔 are not both corners of 𝐷.
Let  ′ be the subpolyomino of  given by the union of the cells of [𝑎, 𝑏], [𝑏, 𝑒] and 𝐷, as in Figure 14. Then, one of the

two subpolyominoes displayed in Figure 12(i) and (ii) is a subpolyomino of ′, and then of , which is a contradiction. □

Definition 4.5. Let = {𝐶1, … , 𝐶𝑛} be a thin polyomino. If there exists a relabelling of the cells of  such that𝐶1, 𝐶2, …𝐶𝑛
is a path of cells, 𝐶1 and 𝐶𝑛 have an edge in common, and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for all 𝑗 > 𝑖 + 2, then  is called thin cycle.

Note that a thin cycle is a polyomino with exactly one hole. In Figure 15 three thin cycles are displayed. In particular,
the polyominoes in (A) and (B) have the polyominoes in Figure 12(i)–(iv) as subpolyominoes. This implies that in both
cases is not a reduced Gröbner basis of 𝐼 with respect to <𝑖

grevlex
for 𝑖 ∈ {1, … , 8}. However, the polyomino in (A) is

prime, whereas the polyomino in (B) is not. Surprisingly, in the next result we exhibit a class of thin cycles having a prime
ideal. The polyomino in Figure 15 (C) belongs to such a class.
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F IGURE 14 Possible positions for the inner intervals [𝑎, 𝑏], [𝑏, 𝑒], and the cell 𝐷, which are contradictory

(A)

(B)

(C)

F IGURE 15 Examples of thin cycle polyominoes

Corollary 4.6. Let  be a thin cycle polyomino whose all maximal inner intervals have length at least 3. Then 𝐼 is prime.

Proof. First of all, we observe that such a  satisfies the condition (2) of Theorem 4.4. In fact, by definition of thin cycle,
there are no cells𝐶,𝐷, 𝐸 and𝐹 such that𝐸, 𝐹 ∈  intersect in one vertex,𝐶,𝐷 ∉  and𝐶 ∩ 𝐷 ∩ 𝐸 ∩ 𝐹 ≠ ∅, as in Figure 11.
Moreover, by hypothesis, there is no maximal inner intervals of length 2 as in Figure 12. By Theorem 4.4, is a quadratic
Gröebner basis for 𝐼 with respect to <𝑖

grevlex
, for all 𝑖 ∈ {1, … , 8}. By Corollary 4.3, the thesis follows. □

As another application of the results obtained for thin polyominoes, we consider the grid polyominoes, that we intro-
duced in [10]. They are prime and, by definition, thin. One can see, by applying Proposition 3.2, that grid polyominoes
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F IGURE 16 A grid polyomino 

have quadratic Gröbner basis with respect to <𝑖
grevlex

, for all 𝑖 ∈ {1, … , 8}. In the following, we will define a new infinite
family of prime polyominoes, obtained by the deletion of certain cells from grid polyominoes. We recall the following
definition.

Definition 4.7. Let  ⊆ 𝐼 ∶= [(1, 1), (𝑚, 𝑛)] be a polyomino such that

 = 𝐼 ⧵ {𝑖𝑗 ∶ 𝑖 ∈ [𝑟], 𝑗 ∈ [𝑠]},

where𝑖𝑗 =
[
𝑎𝑖𝑗, 𝑏𝑖𝑗

]
, with𝑎𝑖𝑗 =

((
𝑎𝑖𝑗

)
1
,
(
𝑎𝑖𝑗

)
2

)
, 𝑏𝑖𝑗 =

((
𝑏𝑖𝑗

)
1
,
(
𝑏𝑖𝑗

)
2

)
, 1 <

(
𝑎𝑖𝑗

)
1
<
(
𝑏𝑖𝑗

)
1
< 𝑚, 1 <

(
𝑎𝑖𝑗

)
2
<
(
𝑏𝑖𝑗

)
2
< 𝑛,

and

1. for any 𝑖 ∈ [𝑟] and 𝓁, 𝑘 ∈ [𝑠] we have (𝑎𝑖𝓁)1 = (𝑎𝑖𝑘)1 and (𝑏𝑖𝓁)1 = (𝑏𝑖𝑘)1;
2. for any 𝑗 ∈ [𝑠] and 𝓁, 𝑘 ∈ [𝑟] we have

(
𝑎𝓁𝑗

)
2
=
(
𝑎𝑘𝑗

)
2
and

(
𝑏𝓁𝑗

)
2
=
(
𝑏𝑘𝑗

)
2
;

3. for any 𝑖 ∈ [𝑟 − 1] and 𝑗 ∈ [𝑠 − 1], we have
(
𝑎𝑖+1𝑗

)
1
=
(
𝑏𝑖𝑗

)
1
+ 1 and

(
𝑎𝑖𝑗+1

)
2
=
(
𝑏𝑖𝑗

)
2
+ 1;

4. 𝑎11 = (2, 2) and 𝑏𝑟𝑠 = (𝑚 − 1, 𝑛 − 1).

We call  a grid polyomino.

In Figure 16, an example of grid polyomino is displayed. For more examples, we refer readers to [10].

Remark 4.8. We observe that a grid polyomino  can be regarded as the disjoint union of two collections of cells, namely
 = 1 ⊔ 2, where 1 = {𝐶 ∈  ∣ 𝐶 is properly contained in exactly one maximal inner interval of } and 2 = {𝐶 ∈  ∣

𝐶 is properly contained in 2 maximal inner intervals of }.

Definition 4.9. Let  be a grid polyomino with  = 1 ⊔ 2 and 1 and 2 as in Remark 4.8. Let  ′1 be a subset of 1
such that  ′ =  ⧵  ′

1
is a polyomino. We call  ′ a subgrid polyomino of  .

Corollary 4.10. Let  ′ be a subgrid polyomino of a grid polyomino  . Then 𝐼 ′ is prime.

Proof. First of all, we claim that  ′ satisfies the condition (2) of Theorem 4.4. By contradiction, assume that there exist 𝐸
and 𝐹 cells of ′ as in Figure 11, but neither 𝐶 nor𝐷 is a cell of ′. By definition of grid polyomino, either 𝐶 or𝐷 is a cell of
 . Without loss of generality, wemay assume that 𝐶 is a cell of  . Then 𝐶 ∈ 2, and 𝐶 ∉ 1, since 𝐶 is properly contained
in two maximal inner intervals: one containing the cells 𝐶 and 𝐸 and the other containing 𝐶 and 𝐹. Then 𝐶 is still a cell
of  ′. Moreover, by definition of grid polyomino, the subpolyominoes displayed in Figure 12 are not subpolyominoes of
 . Since  ′ ⊂  , then they are not subpolyominoes of  ′ either. By Theorem 4.4, is a quadratic Gröebner basis for 𝐼 ′
with respect to <𝑖

grevlex
, for all 𝑖 ∈ {1, … , 8}. By Corollary 4.3, the thesis follows. □

In Figure 17, it is shown a subgrid polyomino ′ obtained from the grid polyomino displayed in Figure 16 by removing
some cells in 1. By Corollary 4.10, the ideal 𝐼 ′ is prime.
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F IGURE 17 A subgrid polyomino of the grid polyomino in Figure 16
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