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d Department of Hydrology and Water Management, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznań, Poland 
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A B S T R A C T   

Water temperature is an important physical indicator of rivers because it impacts many other physical and 
biogeochemical processes and controls the metabolism of aquatic species in rivers. Having a good knowledge of 
river thermal dynamics is of great importance. In this study, an advanced machine learning based model that is 
fast, accurate and easy to use, namely the nonlinear autoregressive network with exogenous inputs (NARX) 
neural network, was coupled with Bayesian Optimization (BO) algorithm for optimizing the number of NARX 
hidden nodes and lagged input/target values and the Bayesian Regularization (BR) backpropagation algorithm 
for the NARX training, to forecast daily river water temperatures (RWT). Long-term observed data from 18 rivers 
of the Vistula River Basin, one of the largest rivers in Europe, were used for model testing, and model perfor-
mance was compared with the air2stream model. The results showed that the NARX-based model performs 
significantly better than the air2stream model in the calibration and validation stages, and can better capture the 
seasonal pattern and peak values of RWT. Input combinations impact the performance of the NARX-based model 
in RWT modeling, and air temperature and the day of the year (DOY) are the major inputs, while streamflow and 
rainfall play a minor role on modeling RWT at the Vistula River Basin. Considering that future times series of air 
temperatures are easily accessible from climate models and DOY is easy to be considered in the model, the NARX- 
based model can serve as a promising tool to investigate the impact of climate change on river thermal dynamics.   

1. Introduction 

Water temperature is a pivotal indicator for rivers, exerting profound 
influence on both physical and biogeochemical processes, as well as the 
metabolic activities of aquatic species (Ouellet et al., 2020; Cai et al., 
2023; Zhi et al., 2023a, b). In the context of a dynamic environment, 
water temperature consistently serves as sentinels of climate change 
(Michel et al., 2022; Rehana and Rajesh, 2023). Consequently, pos-
sessing a comprehensive understanding of the thermal dynamics within 
rivers becomes paramount, particularly when scrutinizing smaller time 
scales, such as the daily scale. 

Mathematical modeling plays an important role in predicting daily 

river water temperature (RWT). In the past decades, tools in RWT 
simulation have been developed from simple statistical models (e.g., 
Mohseni and Stefan, 1999; Benyahya et al., 2017; Piotrowski and 
Napiórkowski, 2019) to complex process-based models (e.g., Dugdale 
et al., 2017; Gatien et al., 2023; White et al., 2023). Among these 
models, machine learning (ML) based models are blooming due to the 
fast development of computational capacity and data science, including 
shallow ML-based models like extreme learning machine models (e.g., 
Zhu et al., 2019a; Heddam et al., 2023a), artificial neural networks (e.g., 
Zhu et al., 2019b; Almeida and Coelho, 2023), hybrid models coupling 
multiple techniques (Graf et al., 2019; Heddam et al., 2023b), and deep 
ML-based models like deep learning models (e.g., Ikram et al., 2023; 
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Zwart et al., 2023). More details about these ML-based models can be 
found in the review of Zhu and Piotrowski (2020). 

In contrast to their shallow counterparts, deep ML models, such as 
deep learning models, exhibit heightened complexity in both their 
structural design and configuration. Consequently, the ability to achieve 
precise daily river water temperature simulations using shallow ML- 
based models assumes paramount significance. 

Among the advanced ML-based models, the Nonlinear Autore-
gressive Network with Exogenous Inputs (NARX) neural network 
emerges as a noteworthy choice, characterized by its high computa-
tional efficiency, accuracy, and user-friendly nature (Alsumaiei, 2020; 
Di Nunno et al., 2021a, 2021b, 2022; Gao et al., 2023; Zhu et al., 2023). 
Previous applications of this model involved coupling it with the 
Bayesian Optimization (BO) algorithm to optimize the number of NARX 
hidden nodes and lagged input/target values. Additionally, the Bayesian 
Regularization (BR) backpropagation algorithm was employed for 
NARX training, resulting in successful predictions of thermal anomalies 
in Polish lakes during heatwaves (Zhu et al., 2023). The efficacy of 
NARX-based models has been substantiated in various hydrological and 
environmental studies, as evidenced by works such as those by Lee and 
Sheridan (2018), Alsumaiei (2020), Di Nunno et al., (2021a,2022), and 
Gao et al. (2023). 

It is noteworthy that, while the NARX model has shown widespread 
applications in hydrological modeling, an enhanced version of this 
particular neural network, enabling the optimization of both the number 
of NARX hidden nodes and lagged input/target values through the 
application of the BO algorithm, along with an optimal algorithm for the 
NARX training represented by the BR backpropagation, represents a 
notable progression in the accurate RWT prediction. Moreover, scant 
attention has been devoted to investigating the influence of different 
input combinations on model performance, particularly the role of 
rainfall. Notably, previous modeling endeavors predominantly 
employed air temperature and flow as primary input parameters, as 
comprehensively reviewed by Zhu and Piotrowski (2020). 

To fill the above gaps, in this study we used the BO-NARX-BR model 
to predict daily RWT of 18 rivers (24 hydrological stations) across the 
Vistula River Basin, one of the largest rivers in Europe. For each hy-
drological station, daily RWT and flow data are available from 1991 to 
2021, and daily air temperature and rainfall data from the nearby 15 
meteorological stations. Model performance was compared with 
another widely used model for RWT modeling, namely the air2stream 
model (Toffolon and Piccolroaz, 2015), to evaluate its performance. 

2. Materials and methods 

2.1. Study area and data 

The study area covers the catchment of the Vistula River, one of the 
largest rivers in Europe. Its length is 1022 km, and the catchment area is 
193,960 km2 (Ochrona Środowiska, 2022). In terms of catchment area, 
it ranks 10th in Europe, with an average population density of 114 
people per km2 (Tockner et al., 2009). Arable land occupies 48.3 %, 
meadows and pastures 14.0 %, forests 26.5 %, water bodies 2.5 %, and 
other land uses 8.7 % (Kajak, 1993). The Vistula River originates at an 
altitude of 1140 m a.s.l. in the Silesian Beskids, a mountain range in the 
Western Carpathians, flowing to the Gdańsk Bay, part of the Baltic Sea. 
The Vistula River and its principal tributaries play a pivotal role in 
influencing biodiversity, while concurrently holding significant eco-
nomic importance. This significance extends to critical areas such as 
energy, water supply, and transportation, particularly within the context 
of inland waterway systems. Daily measurements for water temperature 
and flow were provided by the Institute of Meteorology and Water 
Management – National Research Institute. The former is measured at a 
depth of 0.4 m below the water surface, and the latter is the result of flow 
intensity curve analysis. Due to the extensive research area, the analysed 
rivers are diverse, having characteristics of both mountain rivers and 

lowland rivers. This has implications for the flow rate, which for the 
rivers analysed in the article ranges from 1.67 to 922 m3⋅s− 1. The year- 
round average water temperature varied from 8.1 to 10.9 ◦C. Data on air 
temperature and precipitation also come from the Institute of Meteo-
rology and Water Management – National Research Institute, 
comprising a set of standard meteorological observations in Poland. The 
average air temperature for the meteorological stations mentioned in 
the article ranged from 7.7 to 9.4 ◦C, while the average annual precip-
itation varied from 527 to 1024 mm. 

Detailed information on the 18 studied rivers and analysed hydro-
logical and meteorological stations can be found in Table 1. Fig. 1 shows 
the spatial locations of the hydrological and meteorological stations. 

2.2. Models 

2.2.1. Narx-based models 
This section offers a comprehensive overview of the BO-NARX-BR 

model, providing information on the NARX algorithm used for RWT 
forecasting, along with insights related to the BO and BR algorithms 
applied for the optimization of the NARX model. 

NARX neural networks belong to a specific category of recurrent 
dynamic artificial neural network (RNN), consisting of interconnected 
nodes inspired by the biological neural system. Each node symbolizes an 
artificial neuron that receives one or more inputs, processes them 
through a nonlinear function (referred to as the activation function), and 
produces an output. The primary advantages of NARX networks, 
compared to other ANN approaches, include faster convergence in 
achieving optimal weights for the connections between neurons and 
input parameters (Desouky and Abdelkhalik, 2019), a reduced number 
of the latter to calibrate, enhancing the model’s effectiveness (Di Nunno 
et al., 2021), and the model relates the current value to current and past 
values of the inputs, like other RNN models. 

The fundamental equation for a NARX network employed in time 
series prediction can be formulated as follows: 

y(t) = f (y(t − 1), y(t − 2),⋯, y(t − fd), x(t − 1), x(t − 2),⋯, x(t − pd) ) (1)  

where x(t) is the input layer, which includes five different input com-
binations (see Section 2.2.3) at a given time t, and y(t) is the target, 
represented by RWT at time t. Additionally, pd and fd denote the lagged 
values of inputs and target, respectively. 

The NARX architecture comprises three layers (Fig. 2). The first layer 
functions as the input layer, receiving input parameters. The second 
layer serves as the hidden layer, responsible for computations between 
the input and output. Lastly, the third layer acts as the output layer, 
providing the predicted values. Additionally, the estimated output is 
looped back as input for iterative computation in the subsequent time 
step (as indicated by the dot-dash blue line in Fig. 2). In the hidden layer, 
a sigmoid activation function (f1) was applied, given its suitability for 
training neural networks using back-propagation algorithms. The sig-
moid function is also differentiable, facilitating the learning of neural 
network weights (Boussaada et al., 2018). For the output layer, a linear 
activation function (f2) with a single neuron (n) was utilized. 

Nevertheless, a fundamental challenge in developing any forecasting 
model lies in strategically selecting input variables. In this study, the 
determination of the optimal number of lagged values for both variables 
and the precise configuration of hyperparameters for the NARX model 
were executed using the BO algorithm (Snoek et al., 2012; Zhu et al., 
2023). Specifically, the BO algorithm was employed to discover the 
optimal values for the number of hidden nodes (h1, h2, …, hn in Fig. 2), pd 
and fd. The BO procedure establishes an objective function for Bayesian 
optimization and defines the hyperparameter search space related to the 
number of hidden nodes, lags, and delays. Subsequently, the NARX 
model can be iteratively trained and evaluated, resulting in a loss value 
quantified in terms of Mean Square Error (MSE) for each hyper-
parameter combination. Therefore, the number of hidden nodes, pd and 
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fd that minimize MSE were considered optimal for the modeling. 
Moreover, other NARX parameters also require optimization. Among 

these, the weight (w) and bias (b) parameters are influenced by the 
selected training algorithm. In this context, the BR algorithm (MacKay, 
1992) was chosen. This algorithm outperformed the Levenberg- 
Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms, 
which were pre-tested. These findings align with prior studies in the 
literature, demonstrating that BR exhibits slower convergence but pro-
vides superior performance compared to LM and SCG (Di Nunno and 
Granata, 2020; Zhu et al., 2023). 

Finally, the BO-NARX-BR process was halted when one of the 
following conditions was met (Di Nunno et al., 2023): reaching the 
maximum number of epochs (set at 1000), achieving the LM adjustment 
parameter (set at 1 × 1010), or attaining an error gradient below a 
specified threshold (set at 1 × 10-7). 

2.2.2. air2stream model versions 
The air2stream model is a semi-empirical, hybrid model that com-

bines physics-based structure (e.g., energy balance) with random cali-
bration of model parameters (Toffolon and Piccolroaz, 2015). Due to its 
low model input requirements and high predictive accuracy, it has been 
widely used to predict RWT (e.g., Toffolon and Piccolroaz, 2015; Pio-
trowski and Napiórkowski, 2018; Zhu et al., 2022; Almeida and Coelho, 
2023). 

The air2stream model is based on the lumped heat budget equation 
(see below, Eq. (2), and the variation of river water temperature is 
mainly attributed to two components: (1) the net heat flux at the river- 
atmosphere interface and (2) the heat flux of flow discharge. 

ρcpV
dTw

dt
= AHnet + ρcp

(
∑

I
QiTw, i − QTw

)

(2)  

where, t is time, ρ is water density, cp is the specific heat capacity at 
constant pressure of water, A is the surface area of the river reach, Hnet is 
the net heat flux at the river-atmosphere interface, Tw is water temper-
ature, Q is flow discharge at the downstream section, Qi and Tw,i are flow 
discharge and water temperature of the i-th contributing water flux, and 
V is the total water volume. Toffolon and Piccolroaz (2015) employed a 
Taylor series expansion to rewrite the equation, introducing eight pa-
rameters into the model. This process allows the model to rely solely on 

the time series of air temperature and flow discharge as its exclusive 
inputs: 

dTw
dt

=
1

θa4

{

a1 + a2Ta − a3Tw + θ
(

a5 + a6cos
(

2π
(

t
ty
− a7

))

− a8Tw

)}

(3)  

where Ta is air temperature, ty is the duration of one year (365 days), θ is 
the dimensionless discharge, and a1-a8 are model parameters. The 8 
parameters model version (a2s-8) is the full version of the air2stream 
model, which accounts for the major thermal, geometric, and hydraulic 
characteristics. During the model calibration phase, the 8 model pa-
rameters are determined by trial and error using optimization algo-
rithms like particle swarm optimization. 

Based on the 8 parameters model version (a2s-8), the air2stream 
model can be further simplified into other four versions. Disregarding 
the impact of fluctuating flow discharge (θ = 1) and reorganizing the 
remaining model parameters, the model can be simplified into the 5 
parameters model version (a2s-5): 

dTw
dt

=

{

a1 + a2Ta − a3Tw + a6cos(2π
(

t
ty
− a7

)}

(4) 

In some cases, the average temperature of the contributing water 
closely approximates to that of the river section, then the impact of flow 
discharge on RWT can be disregarded, and the 4 parameters model 
version (a2s-4) can be obtained: 

dTw
dt

=
1

θa4
{a1 + a2Ta − a3Tw} (5) 

Assuming that flow discharge is constant (a4 = 0), the a2s-8 and a2s- 
4 model versions can be further simplified to 7 parameters model 
version (a2s-7) and 3 parameters model version (a2s-3): 

dTw
dt

= a1 + a2Ta − a3Tw+ θ
(

a5 + a6cos
(

2π
(

t
ty
− a7

))

− a8Tw

)

(6)  

dTw
dt

= {a1 + a2Ta − a3Tw} (7) 

In this study, the performance of all these five model versions will be 
evaluated using the observed data from the 18 rivers (24 hydrological 
stations). 

Table 1 
Detailed information of the studied rivers and analyzed hydrological and meteorological stations. The characters of the hydrological stations and the numbers of the 
meteorological stations are shown in Fig. 1.  

No River Station No. Basin area (km2) Altitude(m asl) Meteorological station No. 

1 Wisła Skoczów a 296  285.7 Bielsko-Biała 1 
2 Wisła Kępa Polska b 168,357  57.3 Płock 13 
3 Wisła Toruń c 180,390  32.0 Toruń 3 
4 Soła Oświęcim c 1357  225.8 Katowice 4 
5 Raba Stróża e 644  297.0 Kraków-Balice 5 
6 Dunajec Żabno f 6739  172.4 Tarnów 6 
7 San Radomyśl g 16,838  138.8 Sandomierz 7 
8 Tanew Harasiuki h 2035  164.5 Lublin-Radawiec 15 
9 Wieprz Kośmin i 10,293  115.0 Warszawa 2 
10 Pilica Białobrzegi j 8665  112.0 Warszawa 2 
11 Narew Zambski Kościelne k 27,807  79.0 Białystok 8 
12 Narew Nowogród l 20,169  94.0 Białystok 8 
13 Narew Narew m 1983  130.4 Lesko 14 
14 Biebrza Burzyn n 6929  98.8 Białystok 8 
15 Pisa Ptaki o 3576  104.9 Białystok 8 
16 Omulew Białobrzeg Bliższy p 1788  94.4 Mława 9 
17 Bug Wyszków q 38,395  81.5 Warszawa 2 
18 Bug Krzyczew r 25,595  125.1 Włodawa 10 
19 Bug Strzyżów s 8991  171.7 Włodawa 10 
20 Krzna Malowa Góra t 3042  127.7 Włodawa 10 
21 Drwęca Brodnica u 3540  67.4 Toruń 3 
22 Wda Czarna Woda v 828  111.0 Chojnice 11 
23 Osa Rogóźno 2 w 1137  31.3 Toruń 3 
24 Wąska Pasłęk x 246  6.7 Elbląg 12  
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Fig. 1. Locations of the 24 studied hydrological stations and the 15 corresponding meteorological stations. The numbers and characters are corresponded with that 
list in Table 1. 

Fig. 2. Sketch of the BO-NARX-BR model: Ta – air temperature, Q – discharge, DOY – day of the year, R - rainfall.  

J. Sun et al.                                                                                                                                                                                                                                      



Ecological Indicators 161 (2024) 111978

5

2.2.3. Model setup and evaluation 
In this study, daily dataset from 1991 to 2021 were divided into two 

parts: the data from 1991 to 2013 (approximately 75 % of the total 
dataset) were used for model calibration (training), and the remaining 
data from 2014 to 2021 were utilized for model validation (testing). 

The BO-NARX-BR model, according to different input combinations, 
is divided into five model versions: (1) Model A, which used only daily 
air temperature (Ta) as model input, (2) Model B, which used Ta and flow 
discharge (Q) as model input, (3) Model C, which used Ta and the day of 
the year (DOY) as model input. Here, DOY is an indicator of seasonal 
component (see Zhu et al., 2019c; Yousefi and Toffolon, 2022). (4) 
Model D, which used Ta and rainfall (R) as model input, and (5) Model E, 
which used Ta, DOY, and Q as model input. As seen, Models B, C, and D 
are derived by adding new factors to air temperature, which serves as 
the most important factor for RWT modeling (Zhu et al., 2019b; Zhu and 
Piotrowski, 2020). Then, in the subsequent analysis, Model A is selected 
as the baseline. The reason for setting Model E is that this input com-
bination is widely used in previous studies (e.g., Zhu et al., 2019c). 

To assess the performance of the BO-NARX-BR and air2stream 
models, four widely used metrics were employed: root mean squared 
error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency 
coefficient (NSE), and coefficient of determination (R2). 

NSE = 1 −
∑n

i=1

(
Ti

M − Ti
O

)2

∑n
i=1

(
Ti

O − T
)2 (8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Ti

M − Ti
O

)2

n

√
√
√
√
√

(9)  

MAE =
1
n
∑n

i=1

⃒
⃒Ti

M − Ti
O

⃒
⃒ (10)  

R2 = 1 −
∑n

i=1

(
Ti

M − Ti
O

)2

∑n
i=1

(
Ti

O − T
)2 (11)  

where Ti
M and Ti

O are modelled and observed river water temperature for 
the ith data, T is the average value of Ti

O, and n is the number of sample 

points. 
Next, we will utilize these evaluation metrics to explore the impact of 

various input combinations on model performance. 

3. Results 

In this section, we compared the performance of the air2stream and 
BO-NARX-BR models during the calibration (training) and validation 
(testing) periods. The detailed results are summarized in Tables S1 to S4. 

To identify the best input combination with optimal model perfor-
mance in the subsequent comparisons, RMSE was used as the main in-
dicator to analyze the BO-NARX-BR model during the training and 
testing phases. The detailed results are summarized in Table 2. Because 
all other input combinations are derived by adding new factors to air 
temperature, Model A is selected as the baseline, which produced a good 
performance (average RMSE: calibration = 0.488 ◦C, validation =
0.509 ◦C). By comparing Models B, C and D, which consider different 
input combinations (see Table 2, Tables S1 and S2), it is evident that 
Model C (average RMSE: calibration = 0.483 ◦C, validation = 0.502 ◦C) 
performs the best. The performance of Model D is closer to model A, 
suggesting that rainfall has a minor impact on the variation of RWT. As a 
comparison, Model E performs the worst (average RMSE: calibration =
0.530 ◦C, validation = 0.537 ◦C). Based on this observation, it is 
reasonable to infer that flow discharge and rainfall play a relatively 
minor role in regulating river thermal dynamics in the studied river 
basin. When introducing flow discharge, its impact on model predictions 
may vary based on the specific characteristics of the river. On the other 
hand, the introduction of DOY helps the model capture the seasonal 
variations throughout the year, thereby improving the predicted per-
formance of the model. The detailed results are also presented using box- 
plots (Fig. 3), which clearly show the impact of input combinations on 
model performance as discussed above. 

Similar to the BO-NARX-BR model, we compared the RMSE values of 
the five versions of the air2stream model during the calibration and 
validation phases (see Fig. 4, Tables S3 and S4). The version with the 
best performance is the a2s-5 model (average RMSE: calibration =
1.195 ◦C, validation = 1.249 ◦C). In the calibration phase, the a2s-8 and 
a2s-7 models have RMSE values of 1.211 ◦C and 1.187 ◦C, which are 
close to the a2s-5 model. However, in the validation phase, their values 

Table 2 
The RMSE values of the five combination inputs. The station No. corresponds with that lists in Table 1. Colorbar ranges from green (low values) to red (high values).  

Station Calibration Validation 

Model A Model B Model C Model D Model E Model A Model B Model C Model D Model E 

1  0.572  0.594  0.549  0.582  0.643  0.577  0.606  0.560  0.598  0.651 
2  0.344  0.348  0.337  0.345  0.345  0.364  0.373  0.360  0.370  0.372 
3  0.360  0.352  0.353  0.352  0.370  0.367  0.373  0.355  0.363  0.373 
4  0.635  0.650  0.631  0.634  0.681  0.662  0.659  0.658  0.670  0.690 
5  0.760  0.814  0.762  0.758  0.876  0.633  0.630  0.627  0.673  0.676 
6  0.545  0.562  0.545  0.554  0.596  0.624  0.627  0.625  0.643  0.641 
7  0.573  0.584  0.577  0.577  0.604  0.676  0.690  0.667  0.668  0.709 
8  0.323  0.352  0.353  0.358  0.409  0.449  0.454  0.459  0.468  0.532 
9  0.450  0.463  0.441  0.462  0.471  0.515  0.505  0.476  0.506  0.517 
10  0.799  0.806  0.801  0.807  0.817  0.828  0.853  0.836  0.842  0.878 
11  0.440  0.441  0.439  0.436  0.442  0.466  0.480  0.463  0.462  0.463 
12  0.457  0.485  0.447  0.455  0.509  0.470  0.453  0.464  0.476  0.481 
13  0.544  0.561  0.535  0.547  0.614  0.559  0.544  0.554  0.566  0.579 
14  0.433  0.452  0.435  0.445  0.472  0.456  0.445  0.464  0.484  0.468 
15  0.412  0.403  0.401  0.407  0.423  0.432  0.421  0.412  0.419  0.445 
16  0.665  0.682  0.652  0.666  0.718  0.682  0.677  0.682  0.688  0.712 
17  0.452  0.452  0.426  0.451  0.447  0.464  0.484  0.453  0.477  0.482 
18  0.555  0.561  0.551  0.559  0.572  0.573  0.621  0.570  0.583  0.623 
19  0.424  0.431  0.428  0.431  0.444  0.441  0.448  0.437  0.446  0.454 
20  0.671  0.691  0.665  0.676  0.731  0.727  0.737  0.721  0.731  0.760 
21  0.423  0.425  0.411  0.418  0.448  0.440  0.429  0.432  0.443  0.459 
22  0.395  0.400  0.392  0.391  0.441  0.480  0.467  0.454  0.465  0.468 
23  0.238  0.245  0.225  0.256  0.292  0.133  0.127  0.118  0.121  0.155 
24  0.261  0.248  0.240  0.235  0.339  0.202  0.214  0.195  0.186  0.296  
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Fig. 3. Impact of input combinations on model performance of the BO-NARX-BR model.  
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Fig. 4. Performance of different versions of the air2stream model.  
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are 1.448 ◦C and 1.320 ◦C respectively. This indicates that the predictive 
capabilities of the a2s-8 and a2s-7 models are worse than the a2s-5 
model. Additionally, the performance of both the a2s-3 and a2s-4 
models is poor during both the calibration phase (RMSE: 1.333 ◦C and 
1.341 ◦C, respectively) and the validation phase (RMSE: 1.411 ◦C and 
1.448 ◦C, respectively). 

For the BO-NARX-BR model which exhibited superior performance 
(Model C), the training phase manifested RMSE values within the range 
of 0.225 ◦C to 0.801 ◦C (average: 0.483 ◦C), MAE values varying from 
0.145 ◦C to 0.600 ◦C (average: 0.354 ◦C), R2 values spanning 0.985 to 
0.999 (average: 0.995), and all NSE values surpassing 0.985 (range: 
0.985–0.999, average: 0.995). The model’s robust performance extends 
to the testing phase, with RMSE ranging from 0.118 ◦C to 0.836 ◦C 
(average: 0.502 ◦C), MAE fluctuating between 0.089 ◦C and 0.633 ◦C 
(average: 0.372 ◦C), R2 values ranging from 0.987 to 1.0 (average: 
0.995), and NSE varying between 0.987 and 1.0 (average: 0.995). 

In stark contrast, the widely employed air2stream model (specif-
ically the a2s-5 model version) exhibited notably inferior performance. 
During the calibration period, the air2stream model registered RMSE 
values ranging from 0.827 ◦C to 2.830 ◦C (average: 1.195 ◦C), MAE 
values varying between 0.612 ◦C and 2.348 ◦C (average: 0.898 ◦C), and 
NSE values spanning 0.820 to 0.989 (average: 0.966). As the analysis 
extended to the validation period, the performance disparity between 
the air2stream model and the BO-NARX-BR model became more evident 
(air2stream model: RMSE range 0.897–2.065 ◦C, average: 1.249 ◦C; 
MAE range 0.698–1.634 ◦C, average: 0.969 ◦C; NSE range 0.886–0.987, 

average: 0.964). 
These findings unequivocally indicate that the BO-NARX-BR model 

significantly outperforms the air2stream model in the prediction of daily 
river water temperature. This can be better seen from Fig. 5, which 
presents the predicted and observed daily values of RWT for three rivers, 
including Vistula River at Kępa Polska (a large-sized river, character “b” 
at Fig. 1), Narew River at Zambski Kościelne (a medium-sized river, 
character “k” at Fig. 1), and Wąska River at Pasłęk (a small-sized river, 
character “x” at Fig. 1). As shown in the figure, the NARX-based model 
significantly outperforms the air2stream model in capturing the sea-
sonal pattern and the peak values of RWT, and the predicted values of 
the air2stream model are more scattered, while the predicted RWT of 
the NARX-based model is closer to the 1:1 line. 

Fig. 6 presents the predicted and observed annual average values of 
RWT for three rivers, including Vistula River at Kępa Polska (a large- 
sized river, character “b” at Fig. 1), Narew River at Zambski Kościelne 
(a medium-sized river, character “k” at Fig. 1), and Wąska River at 
Pasłęk (a small-sized river, character “x” at Fig. 1). As shown in the 
figure, the NARX-based model can well reproduce the warming trend of 
RWT, with the nearly overlapped trend lines and annual average RWT 
values. 

Fig. 5. The predicted and observed daily values of water temperatures (Tw) for three rivers: Vistula River at Kępa Polska (upper), Narew River at Zambski Kościelne 
(middle), and Wąska River at Pasłęk (bottom). 
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4. Discussion 

4.1. Selection of air2stream model versions 

As shown in the modeling results, overall, the version with the best 
performance is the a2s-5 model version (average RMSE: calibration =
1.195 ◦C, validation = 1.249 ◦C), slightly outperforming the a2s-8 model 

version. The results are consistent with that in Piccolroaz et al. (2016), 
assessing the model performance in 38 Swiss rivers. The results indi-
cated that the full model version (a2s-8) considering more impact factors 
(e.g., flow) might not the best option, and the simplified 5 parameters 
model version (a2s-5) by disregarding the impact of fluctuating flow 
discharge might be a better choice. For individual rivers, the a2s-8 
version might outperform other versions, including a2s-5, for example, 

Fig. 6. The predicted and observed annual average values of river water temperatures for three rivers: Vistula River at Kępa Polska (upper), Narew River at Zambski 
Kościelne (middle), and Wąska River at Pasłęk (bottom). 
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the station No. 8, as shown in Tables S3 and S4, which indicates that the 
selection of the appropriate model version of the air2stream model 
might depend on the studied rivers of interest. 

4.2. Impact of input combinations on model performance 

Based on the results of model validation and verification, it can be 
observed that all five input combinations perform generally well for the 
24 hydrological stations (RMSE < 0.9 ◦C, MAE < 0.7 ◦C, NSE > 0.98), 
especially when comparing with the air2stream model. Furthermore, 
regardless of the input combination, the BO-NARX-BR model exhibits 
better performance during the training phase compared to the testing 
period. Overall, the BO-NARX-BR model demonstrates outstanding 
performance in predicting daily river water temperatures. 

However, when analyzing the performance of different input com-
binations, differences among the five combinations can be identified. 
The performance of Model D and Model A are nearly identical, sug-
gesting that rainfall plays a secondary role in regulating river thermo-
dynamics. In comparison, Models A and B show minor differences in 
performance during both the training and testing periods. This shows 
that adding streamflow as model input didn’t help to improve model 
performance, indicating that streamflow plays a minor role in control-
ling river thermal dynamics in the Vistula River Basin. Previous studies 
showed that streamflow played a relevant role mainly in snow-fed and 
regulated rivers with hydropower reservoirs, however, for lowland 
rivers, it improved to a lower extent in model performance (see Zhu 
et al., 2019b). The rivers in the Vistula River Basin, evaluated in this 
study, are typical lowland rivers, and the modeling results further 
indicated that streamflow played a minor role in these rivers. 

Additionally, compared to Model A, Model C, with the introduction 
of DOY, though yielding insignificant improvement in average RMSE, 
outperformed other input combinations in most cases among the studied 
rivers, which is consistent with the modeling results in Heddam et al., 
(2023a) and Zhu et al., (2019c) for RWT modeling and Yousefi and 
Toffolon (2022) for the forecasting of lake surface water temperatures. 
Note that Model E with three inputs (Ta, Q and DOY), which has shown 
the best performance in previous studies (e.g., Zhu et al., 2019c), per-
forms the worst in this study. This result might indicate that choice of 
the best input combination depends on the studied rivers of interest. 

4.3. Potential applications of the proposed model on climate change 
studies 

In the context of climate change studies, procuring future time series 
data for air temperatures poses minimal challenges, given the ready 
accessibility of such information through climate models like EURO- 
CORDEX (e.g., Piccolroaz et al., 2021). Additionally, the incorporation 
of DOY into analyses is a straightforward consideration. However, when 
it comes to other critical factors, such as streamflow, ensuring the reli-
ability of future streamflow values becomes a formidable challenge. This 
study delves deeper into unravelling the repercussions of climate change 
on river thermal dynamics within the Vistula River Basin, which has 
shown significant warming trend in the past decades (Ptak et al., 2022). 
The modeling outcomes presented herein underscore the robustness and 
reliability of the proposed BO-NARX-BR model. Notably, Ta and DOY 
emerge as the two pivotal inputs crucial for modeling RWT within the 
Vistula River Basin. 

The results unveiled through our study not only affirm the efficacy of 
the BO-NARX-BR model but also position it as a promising tool for 
meticulously investigating the ramifications of climate change on river 
thermal dynamics. This nuanced approach allows for a more compre-
hensive understanding of the interplay between various environmental 
factors, offering valuable insights for both scientific research and prac-
tical applications in the context of climate change impact assessment 
within river ecosystems. 

In extending the application of data-driven modeling to long-term 

predictions, considerations arise regarding the inherent limitations 
associated with models trained on historical data. The BO-NARX-BR 
model, showcased for its effectiveness in short to medium-term pro-
jections, may face challenges in accurately forecasting scenarios signif-
icantly deviating from observed conditions. This limitation is 
particularly relevant when confronted with the dynamic nature of 
climate change. 

Considering climate models like EURO-CORDEX as a strategy to 
enhance the reliability of long-term predictions could be a key factor. 
These models project future scenarios, providing critical input data for 
variables such as air temperatures under different Representative Con-
centration Pathway (e.g., RCP 4.5 and RCP 8.5, Di Nunno and Granata, 
2023). Therefore, a combined approach, based on data-driven models 
and climate model projections, can bridge the gap between historical 
context and future expectations. It could mitigate potential errors 
associated with relying solely on historical data, offering a more 
comprehensive understanding of the evolving environmental 
conditions. 

5. Conclusions 

This study employed an optimized model based on NARX networks 
for predicting daily river water temperatures for 18 rivers of the Vistula 
River Basin, one of the largest rivers in Europe. Model performance was 
compared with another widely used model air2stream. The modeling 
results lead to the following conclusions:  

(1) The BO-NARX-BR model significantly outperforms the air2stream 
model in the calibration and validation phases, and the model can 
better capture the seasonal pattern and the peak values of RWT. 
The coupling of BO and BR with the NARX model in the BO- 
NARX-BR framework significantly enhances the modeling pro-
cess. BO strategically selects input variables and fine-tunes 
hyperparameters, such as hidden nodes and lagged values, 
ensuring the effectiveness of the NARX model. Simultaneously, 
BR optimizes weight and bias parameters, crucial for training 
algorithms, thereby ensuring the robustness of the overall model.  

(2) The full model version considering more factors might not be the 
best option, and the selection of the appropriate model version of 
the air2stream model might depend on the studied rivers of 
interest.  

(3) Input combinations impact the performance of the BO-NARX-BR 
model in daily RWT modeling. Air temperature and DOY can 
work as the major model inputs, and streamflow and rainfall play 
a minor role in modeling river water temperatures at the Vistula 
River Basin.  

(4) The BO-NARX-BR model is a promising tool to investigate the 
impact of climate change on river thermal dynamics. 

6. Data and code availability 

The codes of the BO-NARX-BR model are available at: https://github. 
com/Fabiodinunno1989/LSWT-prediction/tree/main. The observed 
data for one river station (River WISŁA at SKOCZÓW) are available at: 
https://github.com/slzhu1989/Lake-heatwaves. 
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