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Abstract: This paper presents the design, simulation and experimental validation of a gradient-index
(GRIN) metasurface lens operating at 8 GHz for microwave imaging applications. The unit cell of the
metasurface consists of an electric-LC (ELC) resonator. The effective refractive index of the metasurface
is controlled by varying the capacitive gap at the center of the unit cell. This allows the design of a
gradient index surface. A one-dimensional gradient index lens is designed and tested at first to describe
the operational principle of such lenses. The design methodology is extended to a 2D gradient index
lens for its potential application as a microwave imaging device. The metasurface lenses are designed
and analyzed using full-wave finite element (FEM) solver. The proposed 2D lens has an aperture of
size 119 mm (3.17λ) × 119 mm (3.17λ) and thickness of only 0.6 mm (0.016λ). Horn antenna is used as
source of plane waves incident on the lens to evaluate the focusing performance. Field distributions of
the theoretical designs and fabricated lenses are analyzed and are shown to be in good agreement. A
microwave nondestructive evaluation (NDE) experiment is performed with the 2D prototype lens to
image a machined groove in a Teflon sample placed at the focal plane of the lens.

Keywords: metamaterials; lenses; focusing; microwave imaging; nondestructive testing

1. Introduction

Lenses are devices known for their ability to focus incident electromagnetic (EM)
waves and form images of an object [1]. They have been studied and widely used in the
optical regime of the electromagnetic spectrum for centuries. Since the 1940s, lens designs
at microwave frequencies have been investigated [2–7] and implemented in a wide range of
applications such as imaging [8,9], radar systems [10,11], material characterization [12,13]
and non-destructive testing [14]. Traditionally, dielectric materials have been used to
engineer lenses in the microwave regimes, but they suffer from heavy and bulky profiles,
and their machining processes are expensive as well [15].

As alternatives to conventional lenses, metamaterials have been researched exten-
sively in recent years as means of controlling the propagation of EM waves ranging from
microwave to optical [16]. These are engineered structures, which consist of periodic
arrangement of subwavelength scatterers or unit cells, whose size is much smaller than the
operating wavelength λ. Based on the effective medium theory, a periodic arrangement
of subwavelength scatterers can be characterized by effective permittivity and effective
permeability. The unit cell size a should be less than λ/4 for such inhomogeneous periodic
materials to behave like a homogenous medium to incident waves [17,18]. The unit cells of
metamaterials have also been referred to as meta-atoms because of their analogy to atoms
of crystalline materials. The bulk EM properties of such metamaterials depend on the
contents and arrangement of unit cells in contrast to material composition in the atomic
scale such as that of dielectric materials. Hence, they can be tailored to have specialized
EM characteristics including novel lensing applications, which are difficult or impossible to
achieve with lenses made of conventional materials. The concept of 3D bulk metamaterials
was judiciously extended to 2D metasurfaces, which consist of subwavelength unit cell
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placed on a surface or an interface [19]. Metasurfaces provide an attractive alternative to
metamaterials as they take less physical space and exhibit lower losses.

Research in metamaterials and metasurfaces was stimulated by the theoretical work
of V. Veselago et al. in the 1950s [20–22] and later by the realization of engineered meta-
materials by Smith et al. at the turn of the century [23–27]. The use of metamaterials as
lenses was first suggested by Pendry in [28], where he showed theoretically that a slab
made of negative index metamaterials (NIM) can act as a ‘perfect lens’ for a diverging
source as both the propagating and evanescent waves will contribute to the resolution of
the image. Although losses associated with engineered metamaterials make it impossible to
realize perfect lensing conditions [29,30], sub-diffraction imaging using NIM lenses is still
achievable as shown by various studies [31–34]. However, despite their super resolution
capabilities, NIM lenses still have one fundamental limitation: the inability to focus plane
waves into a focal spot, which forms the basis of the Fourier transform and imaging capa-
bilities of a conventional lens [35]. NIMs also tend to be narrowband and highly dispersive
structures since they operate in the resonant region of the unit cells.

In 2005, the concept of NIM was extended to graded metamaterials, where it was
shown that metamaterials whose effective electromagnetic properties vary spatially can also
be fabricated by introducing a slight change in the properties of each successive unit cell [36].
This paved the way for numerous unprecedented applications of metamaterials, including
GRIN metamaterial lenses, which can provide phase compensation mechanisms and bring
plane waves into focus [37]. A GRIN metamaterial lens also operates in non-resonant
regions of its unit cells and hence overcomes the narrowband and large transmission losses
associated with NIM lenses [38].

The idea of GRIN lenses was theorized by Maxwell back in 1854, when he described
remarkable imaging capabilities of a sphere with a radially symmetric refractive index [39].
Such gradual refractive index variation can be used to construct flat lenses, where bending of
incident waves is achieved through the refractive index contrast rather than the curved surface
of conventional lenses. Classic examples of GRIN lenses include the Fresnel lens, Wood lens
and Luneburg lens [40–43]. The advent of metamaterials and metasurfaces has renewed
interest in research of GRIN lenses and inspired numerous works [44–50]. The tailorable
properties and flat geometry of metasurfaces has provided ground-breaking engineering
potential for GRIN lens designs, which was not possible with conventional dielectrics.

This paper presents the design, simulation and experimental validation of GRIN
metasurface lenses operating at 8 GHz for microwave imaging applications. The proposed
lenses use PCB technology and thus constitute a low-cost, low-profile and lightweight
design. Section 2 provides a brief summary of the underlying principles of GRIN lens
operation. In Section 3, the unit cell design of the metasurface lens is introduced and the
results of a parametric simulation study are reported. The unit cell simulation results
were used to guide the design of a 1D followed by a 2D gradient metasurface lens with
a predetermined focal length. The focusing action of the lenses are reported using full
wave FEM solver Ansys HFSS. Prototype of the lenses were fabricated for experimental
verification and the corresponding results are presented in Section 4. A microwave NDE
experiment with the 2D metasurface lens is reported at the end to demonstrate its capability
as a microwave imaging device.

2. Theory

A GRIN lens consists of a planar slab with spatially varying refractive index as shown
in Figure 1. Consider a plane wave that consists of parallel rays incident on a GRIN lens.
The optical paths of the rays are curvilinear but can be approximated to linear paths for a
very thin lens. Using geometric optics, the optical path p(x) of an arbitrary ray located at x
can be written as [47].

p(x) =
√

f 2 + x2 + n(x)t (1)
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where f is the focal distance and n(x) is the spatial distribution of the refractive index. For
all the rays to converge to a single focal point, the optical path lengths of arbitrary off-axis
rays should equal to those passing exactly through the optical axis. This results in the
gradient index profile n(x) for GRIN lenses is expressed as,

n(x) = n0 −
1
t

[√
f 2 + x2 − f

]
(2)

where n0 is the maximum refractive index at the center of the lens. EM waves can be
approximated as rays using geometric optics for optical lenses as lens dimensions are many
orders of magnitudes larger than wavelength of light. However, full-wave electromagnetic
theory must be considered to describe lenses that operate at microwave frequencies. Wave
analysis takes into account effects such as interference and diffraction which become
significant when the size of the lens is comparable to the wavelength [51]. Similar to optical
path analysis, the phase advance of all the rays from the incident lens surface to the focal
spot should be equal in this case. For this, the spatial distribution of the phase shift, ϕ
across the lens should obey the following equation [46].

ϕ(x) =
2π
(√

f 2 + x2 − f
)

λ
(3)

where x is the position on the lens in the x-direction and the center of the lens is at x = 0, f
is the focal length of the lens, and λ is the operating wavelength.
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3. Design
3.1. Unit Cell

The unit cell used for the proposed GRIN lens is an electric-field-coupled LC (ELC)
resonator first proposed by Schurig et al. [52] and is shown in Figure 2a. This resonator has
a split-gap at the center of the structure providing capacitance (which couples strongly to
an applied electric field parallel to the split-gap) and two loops in parallel on either side to
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provide inductance in the structure [53]. An equivalent circuit of the resonator is shown in
Figure 2b. The resultant resonant frequency fo can be expressed as

fo =
1

π
√

2LC
(4)

where L/2 and C are the total inductance and capacitance of the structure, respectively.
When the resonator is excited by a uniform magnetic field parallel to the plane of the
structure, currents induced in the two loops are in opposite direction leading to zero
magnetic moment. Thus, the structure does not provide magnetic coupling, and only the
capacitive element C drives its fundamental resonance according to Equation (4).
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unit cell.

The split-gap dimensions g can be varied to change the εre f f and hence the refractive
index (n2 = µe f f εe f f ) and resonating frequency ωo of the unit cell [54]. A smaller split-
gap will correspond to a larger capacitance and consequently a higher refractive index(

C ∝ εe f f

)
. Hence, a symmetric array of such ELCs, with increasing split-gap from the

middle, will generate the required refractive index profile for focusing. Incident waves
from both the edges of the lens will be refracted towards the higher refractive index unit
cells at the center, thus producing a focusing action.

The ELC unit cell HFSS model, with the incident wave polarization and dimensional
parameters, is shown in Figure 3a. The dimensional parameters for the unit cell design are:
a = 7 mm, d = 6.5 mm, l = 2 mm. Periodic boundary conditions were used to obtain the
scattering parameters for the unit cell in a metamaterial arrangement. Figure 3b,c plot the
surface current density and electric field distribution, respectively, as obtained from HFSS
numerical results. The surface current density plot shows that there is no net circulation of
current in the unit cell due to clockwise and counterclockwise components in adjacent areas
of the structure as expected. The electric field distribution plot shows a strong local field
enhancement in the capacitive gap at the center of the unit cell. The frequency response of
the unit cell was varied by varying the split-gap g. The nominal split-gap g for the highest
refractive index unit cell was taken as 0.2 mm due to fabrication limits. The PCB material
used was FR4 with a thickness of 0.6 mm and trace width (w) of 0.4 mm. A parametric
unit cell study was performed for varying values of split-gap g, ranging from 0.2 mm to
4 mm to obtain varying phase shifts and determine the frequency of operation of the lens.
Figure 4a,b show the parametric S21 magnitude and phase results for 10 representative
cases obtained using HFSS. 8 GHz was chosen as the frequency of operation from the
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parametric results to maximize transmission through the lens (S21 magnitude) and achieve
high phase shift between the individual unit cells (S21 phase) simultaneously.
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3.2. Metasurface Lens

The desired phase profile of 1D gradient index lens of thickness 0.6 mm operating at
8 GHz for a focal distance of 110 mm follows (3) and is plotted in Figure 5a. The numerical
phase shift results from the model-based parametric study were used to determine unit
cells with appropriate split-gaps and obtain an approximation to the desired phase profile.
The proposed GRIN metasurface lens design consists of 18 × 20 unit cells in the x-y plane
as shown in Figure 5c. The lens has a total dimension of 126 mm (3.36λ) × 140 mm
(3.72λ) × 0.6 mm (0.016λ). The simulated phase profile of the final 1D GRIN lens design
is also plotted in Figure 5a. A higher phase shift is observed for larger split-gap unit cells
as expected.
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Electromagnetic parameter retrieval according to Appendix of [34] was carried out for
the 18 unit cells to extract the refractive index profile. The highest refractive index (no in
Equation (1) at the center of the GRIN lens is 27.91 for the proposed design at 8GHz. The
simulated refractive index profile is plotted in Figure 5b. The theoretical refractive index profile
according to (2) is plotted as well to demonstrate the correlation between geometric optics and
full-wave electromagnetism. The difference in the theoretical and simulated gradient index
profile is due to the approximations of EM waves as straight rays in geometric optics, which
does not consider effects such as scattering and diffraction. Although it has been argued
that assigning bulk material properties to metasurfaces using a variant of Nicholson Ross
Weir method may produce ambiguous results [55,56], they can still be used to characterize
metasurfaces if the thickness of the metasurface remains constant [19].

Full-wave simulation of plane waves incident on the lens was performed in HFSS
to illustrate the focusing action. The geometrical setup modeled by HFSS is shown in
Figure 6a. The GRIN lens was placed on the x-y plane and centered at the origin. The
gradient of index is along the y direction, while the wave propagation is along z direction.
A horn antenna with its E field polarized along the x-axis was used as the source of incident
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EM waves. The antenna was kept at a far-field distance of 200 mm (5λ) from the lens to
ensure plane waves are incident on the lens surface. Open boundary conditions were used
to simulate the structure in free space. The magnitude of the simulated E field distribution
is plotted on a y–z observation plane on the other side of the lens. In Figure 6b, the waves
can be seen to refract towards the center after passing through the GRIN lens and come
to focus close to the designed focal length of 110 mm (2.93λ) from the plane of the lens.
Figure 6c shows the full-wave simulation without the GRIN lens. E field distribution
without the lens shows the incident plane waves from the horn antennas propagating
without any focusing action.
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The GRIN lens described in the previous section has a gradient index in only one direction
and hence the focusing action was in the azimuthal (horizontal) plane only. The same design
concept was extended for a two-directional gradient metasurface lens design and is reported
in this section. The focusing action for this case will occur in both the vertical and horizontal
plane and hence a point focus can be obtained for microwave imaging applications. The
proposed 2D GRIN lens design is shown in Figure 7 and consists of 17 × 17 unit cells with
dimensions of 119 mm (3.17 λ) × 119 mm (3.17 λ) × 0.6 mm (0.016 λ).
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The HFSS model setup to validate focusing action is shown in Figure 8a. Two ob-
servation planes (both horizontal and vertical) were considered in this case. The solution
frequency is 8 GHz, which is same as the 1D GRIN lens. The electric field distribution in the
horizontal plane are shown in Figure 8b,c. A similar focusing action is observed with the 2D
GRIN lens, while the free space results show the incident plane waves without any focusing.
The predetermined focal length for this design is 100 mm. The vertical observation plane
was placed at the focal plane (100 mm from the GRIN metasurface lens) and the electric
field distribution are plotted in Figure 8d,e to observe the point-focusing action. Symmetric
refraction of incident waves produces a circular confinement of an electric field in the focal
plane as observed in Figure 8d. The electric field distribution without the 2D GRIN lens is
plotted as well (Figure 8e) to indicate the resolution enhancement.
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4. Experiment
4.1. Focusing

A prototype of the proposed 1D GRIN metasurface lens was fabricated at first for
experimental verification. The fabricated lens is shown in Figure 9a. A homodyne detection
scheme described in [34] was used to perform microwave imaging experiments at 8 GHz.
A wideband horn antenna was used as the source of plane waves. The horn was kept
at 200 mm from the metasurface lens. A quarter wavelength monopole was used as the
receiver to sample the field after it passes through the lens. The experimental setup is
shown in Figure 9b. Figure 9c,d show the measured field distributions with and without the
lens. From the plots, focusing action of the fabricated metasurface lens is clearly observed
and they match well with the numerical results shown in Figure 6. The cross range field
distribution in the focal plane (110 mm) with and without the lens is plotted in Figure 9e.
The full width at half maximum (FWHM) at the focal plane with the lens is 33 mm (0.88λ)
and is 77 mm (2.04λ) without the lens, indicating a resolution enhancement by a factor of
2.33 that is achieved with the 1D GRIN lens in the azimuthal plane.
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The prototype of the 2D GRIN lens is shown in Figure 10a. The homodyne setup
described previously was used to perform the experiments. A horn antenna kept at a
distance of 200 mm was used as the source of incident plane waves. A quarter wave
monopole was used to sample the field distribution in the horizontal as well as the vertical
plane. The experiments were performed without the lens as well to validate the focusing
action of the lens. The horizontal field distribution is plotted in Figure 10b,c and compares
well with the simulation results shown in Figure 8. The vertical observation plane was
located 100 mm from the lens surface and the experimental results are shown in Figure 10d,e.
A circular focal spot was obtained with the 2D GRIN lens as expected (Figure 10d). The
experiment was repeated without the lens to calculate the resolution enhancement. The
FWHM with lens is 40 mm (1.2λ) and without lens is 70 mm (1.86λ), thus indicating
a resolution enhancement by a factor of 1.5 in the vertical plane by the 2D GRIN lens
(Figure 10f).

Sensors 2022, 22, x FOR PEER REVIEW 11 of 16 
 

 

 

(e)  

Figure 9. (a) Fabricated GRIN Metasurface Lens. (b) Experiment setup using homodyne imaging 

system. (c) Measured field distribution with lens. (d) Measured field distribution without lens. (e) 

Normalized measured field at focal plane. 

The prototype of the 2D GRIN lens is shown in Figure 10a. The homodyne setup 

described previously was used to perform the experiments. A horn antenna kept at a 

distance of 200 mm was used as the source of incident plane waves. A quarter wave 

monopole was used to sample the field distribution in the horizontal as well as the 

vertical plane. The experiments were performed without the lens as well to validate the 

focusing action of the lens. The horizontal field distribution is plotted in Figures 10b,c 

and compares well with the simulation results shown in Figure 8. The vertical 

observation plane was located 100 mm from the lens surface and the experimental 

results are shown in Figures 10d,e. A circular focal spot was obtained with the 2D GRIN 

lens as expected (Figure 10d). The experiment was repeated without the lens to calculate 

the resolution enhancement. The FWHM with lens is 40 mm (1.2λ) and without lens is 70 

mm (1.86λ), thus indicating a resolution enhancement by a factor of 1.5 in the vertical 

plane by the 2D GRIN lens (Figure 10f). 

 

(a)  

Figure 10. Cont.



Sensors 2022, 22, 8319 12 of 16
Sensors 2022, 22, x FOR PEER REVIEW 12 of 16 
 

 

  

(b)  (c)  

 
 

(d)  (e)  

 
(f)  

Figure 10. (a) Fabricated 2D GRIN Metasurface Lens. (b) Field distribution in horizontal plane 

with lens and (c) without lens. (d) Field distribution in vertical (focal) plane with lens and (e) 

without lens. (f) Cross- range intensity profile comparison of lens and free space at focal plane. 

Figure 10. (a) Fabricated 2D GRIN Metasurface Lens. (b) Field distribution in horizontal plane with
lens and (c) without lens. (d) Field distribution in vertical (focal) plane with lens and (e) without lens.
(f) Cross- range intensity profile comparison of lens and free space at focal plane.
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4.2. Microwave NDE

Microwave NDE experiments were performed with the 2D GRIN lens to validate its
use as an imaging device. Microwaves have the ability to penetrate deep into low-loss
dielectrics and hence are suitable for inspection of electrically insulated low-loss composites.
In addition to this, a microwave NDE system offers various advantages over other existing
NDE techniques such as non-contact, no requirement for couplants, a relatively low cost
and one-sided scanning [57]. Therefore, the capability of the fabricated metasurface lens
for the detection of defects with far-field microwave NDE data is demonstrated.

The experiment setup is shown in Figure 11a. A machined groove of dimensions
15 mm× 5 mm along the length of the Teflon sample under test was treated as the defect. The
contributions due to the defect were measured by subtracting the signal from a similar healthy
Teflon sample. The details and flowchart of the defect imaging method are reported in [34]. The
sample schematic and details are shown in Figure 11b. The sample was located at the focal
plane of the lens. A quarter-wave monopole was used to scan the vertical plane and sample
the field distribution in transmission mode. The presence of the groove defect is indicated by
the presence of the 1D strip maxima shown in Figure 11c. The experiments were performed
without the lens (Figure 11d) to show that the groove defect can only be defected due to the
focusing action obtained using the proposed GRIN metasurface lens.
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5. Conclusions

The emergence of metamaterials and metasurfaces in the past two decades has provided
unprecedented capabilities for engineering novel lenses in the microwave regime. Gradient
index metasurface lenses offer several advantages over other metamaterial lens designs. This
paper presents the design of a GRIN metasurface lens operating at microwave frequencies.
Numerical analysis of the metasurface unit cell is described to guide the lens design. A
prototype of the proposed lens was fabricated for experimental verification and the focusing
action of the lens was studied using field distributions. The numerical and experimental
results for focusing are found to be in good agreement, validating the design. The proposed
lens uses PCB technology and hence provides a low-cost and low-profile design.

The authors have earlier studied the feasibility of using NIM lenses for microwave
non-destructive evaluation (NDE) of glass fiber-reinforced polymer (GFRP) composites.
While it was demonstrated that NIM lenses can provide subwavelength focusing and
defect detection capabilities, they can only focus waves from a diverging source kept at an
appropriate distance from the lens. GRIN metasurface lens designs allow the focusing of
plane waves with no restrictions on the source or focal spot distances. A focal spot size of
0.65λ was obtained at a distance of 1.67λ for a NIM lens operating at 6.3 GHz [58] whereas
a focal spot size of 1.2λ is achieved with the proposed GRIN lens at a distance of 8.26λ.
Moreover, the GRIN lens also provides a planar, low-loss and lightweight design that is
suitable for fabrication and integration with microwave imaging systems. Future work will
involve the extensive application of the 2D GRIN Metasurface lens for microwave imaging.
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