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ABSTRACT 
This paper deals with the formulation via the instantaneous 

geometric invariants of a specific algorithm to determine the 

higher-order centrodes and Bresse’s circles for the coupler link 

of slider-crank mechanisms. In particular, the first, second and 

third order centrodes can be obtained in any configuration of the 

mechanism by showing the successive positions of the instant 

center of rotation and the acceleration and jerk poles. Several 

graphical and numerical results for a given slider-crank 

mechanism in different configuration, are also shown. 
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1. INTRODUCTION
The kinematic analysis of planar mechanisms can be usually

developed through graphical and analytical methods. Among the 

various analytical methods there is the one that refers to the 

instantaneous geometric invariants, which allow to obtain 

simplified and compact relationships for practical applications. 

The instantaneous geometric invariants were introduced by 

Krause in 1920 [1] and developed by Bottema [2] and Veldkamp 

[3]. They can be very useful in the field of kinematics from 

different points of view, such as the kinematic synthesis of 

mechanisms [4-5], the curvature analysis [6] or the design of 

equivalent mechanisms [7-8]. One application of the 

instantaneous geometric invariants is the one that refers to the 

centrodes, which can be utilized in various fields of machine 

design, as in cam mechanisms [9], cylindrical gears [10], 

together with kinematic synthesis of linkage [11-13]. The 

centrodes have been utilized also in the synthesis of spatial and 

spherical linkages [14-17]. The kinematic synthesis of linkage is 

often carried out by using some important geometric loci, as the 

inflection circle, the stationary circle and the cubic of stationary 

curvature, and the instantaneous geometric invariants can be 

very useful to express these geometric loci in some advantageous 

algebraic forms, as reported in [18]. However, geometric loci, as 

the ones mentioned above, along with the instant center of 

rotation, the acceleration and jerk centers [19-23], the Ball and 

Javot points, can be also of great interest for the kinematic 

analysis and synthesis of planar mechanisms [24-27]. 

The main research motivations of this paper are related to the 

development of the advanced planar kinematic theory for analyzing 

the rigid body motion with more details. In fact, increasing the order 

of the time-derivatives of a point position vector of a rigid body and 

thus, going from the velocity, to the acceleration, jerk and others, we 

get more instantaneously information on what the rigid body is 

going to do, when the previous time derivatives are equal to zero. 

For example, this is the case of the incipient motions, where the 

velocity vectors of all points are zero, while the accelerations are 

different by zero. In this context, the determination of the 

corresponding vector fields and their poles, as the acceleration 

center and the jerk pole, along with the higher-order centrodes and 

Bresse’s circles, become very useful for understanding the 

mechanism kinematic behavior. 

In particular, this paper is devoted to the determination of the 

third order fixed and moving centrodes, along with the 

zero-normal and zero-tangential jerk circles, even to validate the 

right position of the jerk pole, as center of the jerk vector field of 

the coupler link. The proposed formulation has been obtained by 

using the instantaneous geometric invariants and referring to 

slider-crank mechanisms with constant angular velocity of the 

driving crank. Graphical and numerical results have allowed the 

validation of the proposed formulation, which has been 

implemented in Matlab program to obtain the first, second and 

third order centrodes, along with the Bresse and jerk circles, in 

any configuration of a given slider-crank mechanism. 
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2. INSTANTANEOUS GEOMETRIC INVARIANTS 
Referring to the slider-crank mechanism of Fig. 1, the pairs 

of fixed  (O, X, Y) and moving f (, x, y) reference frames, 

were chosen along with the corresponding fixed and moving 

canonical reference frames 1( , , )P X Y  and 1( , , )f P x y  which 

origin coincides with the instantaneous center of rotation P1 of 

the coupler link AB. In particular, the Y axis is orthogonal at P1 

point to the fixed centrode π and oriented toward the moving 

centrode that is not shown in Fig.1. Consequently, the X axis is 

tangent to both centrodes at P1 point and oriented clockwise with 

respect to the Y axis, while the moving canonical reference 

frame f  is assumed as coincident with  at the referring 

configuration, as shown in Figure 1. The position and the 

orientation of the moving frame f (, x, y) is obtained though the 

position vector r  which can be expressed as 

 

 cos sin
T

r    =r                             (1) 

 

where r and  are the A0A crank length and the oriented counter-

clockwise angle of A0A with respect to the X-axis, respectively. 

Thus, during the mechanism motion,  and remain fixed to 

the frame, while f and f move as attached to the coupler link AB 

of the slider-crank mechanism.  

The instantaneous geometric invariants an and bn are the n-

order derivatives of the Cartesian-coordinates IX and IY of P1 

with respect to the oriented angle  that f makes with respect to

during the coupler motion, by taking the form 
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where n is a natural number. 

 

 
 

FIGURE 1: ORIGINAL( AND f) AND CANONICAL ( AND f ) 

REFERENCE FRAMES. 

For a starting configuration in which both canonical frames 

coincide each other, as shown in Fig. 1, the instantaneous 

geometric invariants up to the third order are given by the 

following expressions: 

 

0 0 1 1 2 0a b a b a= = = = =                        (3) 

 

while b2, a3, and b3 are different from zero and take the forms: 
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Referring to Eq. (1), the first, second and third derivatives with 

respect to the angle φ of the Cartesian coordinates XΩ and YΩ that 

represent the components of the position vector rΩ, are given by 
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Similarly, the first, second and third derivatives of the crank 

angle δ with respect to φ, can be expressed as follows: 
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The proposed formulation allows the computations of the 

instantaneous geometric invariants an and bn for n = 0, 1, 2, 3, 

which are very useful to express in a canonical algebraic form, 

the most significant geometric loci with respect to 1( , , )f P x y . 

This computation can be very complex when referring to the 

canonical frames directly, from which the convenience to make 

use of a different pair of frames, as f and , which are closer to 

the mechanism motion than the canonical frames. 

Similarly, the first, second and third derivatives of the crank 

angle  with respect to , can be expressed as follows: 
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3. HIGHER ORDER CENTRODES 

By considering the fixed frame  and f as attached to the 

coupler link AB of the slider-crank mechanism the position of 

generic point M can be expressed as. 
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When M  P1 in Eqs. (18), the parametric equations of the 

first order of fixed centrode 1 can be written as 
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Because of P1 is the instantaneous center of rotation 

1 1 0= =P PdX dY

dt dt
 and substituting Eqs. (7), one can obtain the 

parametric equations of the first order of moving centrode l1 as  
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When M  P2 in Eqs. (18), the parametric equations of the 

second order of fixed centrode 2 can be written as  
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Parametric equations of the second order of moving centrode 

l2 can be obtained when 2 2 0P PdX dY

dt dt
= = , in Eqs. (21) as 
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When M  P3, Eqs. (18) the parametric equations of the third 

order of fixed centrode 3 can be written as  
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Parametric equations of the third order of moving centrode l3 

can be obtained when 3 3 0P PdX dY

dt dt
= = , in Eqs. (23) as 
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(24) 
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4. BRESSE AND JERK CIRCLES 
The geometric loci of kinematic interest are the Bresse’s and 

jerk circles. They can be expressed in an algebraic form by 

referring to the moving via the instantaneous geometric 

invariants. In particular, referring to the moving canonical 

reference frame 1( , , )f P x y , one has the following algebraic 

equation for the inflection circle : 

 
2 2

2 0x y b y+ − =                              (25) 

where b2 is obtained by the Eq. (4).  

The stationary circle  or second Bresse’s circle takes the 

form: 
 

( )2 2

2

2 0x y b x + + =                     (26) 

 

where  and represent the angular velocity and acceleration, 

respectively. Thus, the acceleration center P2 can be obtained as 

intersection of the two Bresse’s circles. 

The zero-normal jerk circle  has the following algebraic 

equation: 
 

( ) ( )2 2

3 23

2 23 3 0x y a x b b y   + − − + =       () 

 

where a3 and b3 are obtained by Eqs. (5) and (6), while  and

are the angular velocity and acceleration in Eqs. (15) and (16).  

The zero-tangential jerk circle  has the following algebraic 

equation: 
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3 2 3 3
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where b2, a3 and b3 are obtained as reported above, while  is 

the angular jerk in Eq. (17).  

Consequently, the jerk pole P3 can be obtained by intersecting 

the zero-normal and zero-tangential jerk circles, where the first 

intersection is still located at P1, as shown in Fig. 2. Excluding 

the inflection circle of Eq. (25), the geometric loci given by the 

algebraic Eqs. (26), (27) and (28) take into account the kinematic 

properties of the coupler motion of the planar mechanism, that is 

they depend on the angular velocity  , the angular acceleration 

  and the angular jerk  , respectively, and not only by the 

geometric properties given by the instantaneous invariants b2, a3 

and b3. Instead, the inflection circle, since representing the 

geometric locus of all coupler points showing an inflection point 

in their trajectory, only depends on b2. 

 

5. GRAPHICAL AND NUMERICAL RESULTS 
The proposed formulation has been implemented in Matlab 

for validation purposes and significant graphical and numerical 

results have been obtained for different sizes and configurations 

of the slider-crank mechanism. 

In particular, Figs. 2 and 3 show the 2nd order fixed λ2 and 

moving l2 centrodes, along with the Bresse circles, which 

intersect each other at the acceleration pole P2 for the crank 

angles  = 60° and 0°, respectively. 

Similarly, Figs. 4 and 5 show the 3rd order fixed λ3 and 

moving l3 centrodes, along with the jerk circles, which intersect 

at the jerk pole P3 for the crank angles  = 60° and 0°, 

respectively. 

Finally, Figs. 6 and 7 show all together the 1st, 2nd and 3rd 

order fixed and moving centrodes for the crank angles  = 60° 

and 0°, respectively, along with P1, P2 and P3. 
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FIGURE 2: 2ND ORDER CENTRODES AND BRESSE’S CIRCLES 

FOR  = 60°. 

 
FIGURE 3: 2ND ORDER CENTRODES AND BRESSE’S CIRCLES 

FOR   = 0°. 

 

 
FIGURE 4: 3RD ORDER CENTRODES AND JERK CIRCLES FOR 

 = 60°. 

 
FIGURE 5: 3RD ORDER CENTRODES AND JERK CIRCLES FOR 

 = 0°. 

 
FIGURE 6: 1ST, 2ND AND 3RD ORDER FIXED AND MOVING 

CENTRODES FOR  = 60°. 

 
FIGURE 7: 1ST, 2ND AND 3RD ORDER FIXED AND MOVING 

CENTRODES FOR  = 0°. 
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6. CONCLUSIONS 
In order to give a contribution to the development of the 

advanced planar kinematic theory, a suitable formulation via the 

instantaneous geometric invariants of a specific algorithm to 

determine the higher-order centrodes and Bresse’s circles for the 

coupler link of slider-crank mechanisms, has been proposed. 

The first, second and third order centrodes can be obtained in 

any configuration of a given mechanism by showing the 

successive positions of the instant center of rotation and the 

acceleration and jerk poles. 

Moreover, the proposed algorithm allows the animation of 

the mechanism, along with the first, second and third order 

moving centrodes, which are attached to the moving plane of the 

coupler link. Bresse’s circles and zero–normal and zero–

tangential jerk circles are also obtained with their intersection at 

the instant center of rotation and acceleration and jerk poles. The 

first order centrodes are characterized by a pure-rolling motion 

and geometric properties, while the second and third order 

centrodes are related to kinematic properties and the respective 

moving and fixed centrodes, intersect each other in more than 

one point, and one of them is the acceleration or jerk pole, 

respectively. 
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