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ABSTRACT This paper presents an innovative approach for detecting illegal microdumps using very
high-resolution optical satellite imagery, addressing a significant environmental monitoring challenge in
Campania, Italy. Due to the regional vulnerability to illegal dumping, exacerbated by the waste management
crisis, there is a pressing need for enhanced surveillance and accurate identification of microdump locations.
This paper uses deep learning techniques to introduce an effective technology for detecting microdumps in
high-resolution optical satellite images from Pleiades and GeoEye-1 satellites in an end-to-end solution, from
images to detection. Its primary aim is to preliminarily assess dumping sites within specific target areas of
interest (patrolling cells) for subsequent on-ground confirmation and characterization. The proposed system
comprises two neural networks: the first, based on RetinaNet, identifies regions containing microdumps,
while the second, utilizing InceptionV3, enhances the detection through pixel-wise classification. A fusion
rule is then applied to combine the decisions of these networks. This technology addresses an environmental
issue and is part of a progressive monitoring process. Validation was performed through a significant case
study focusing on an extensive area between Naples and Caserta in the Campania region in Italy, particularly
affected by illegal microdumps. A model was trained and validated using the pansharpened version of
Pleiades multispectral images. This model exhibits potential for detecting microdumps in images from
other satellite missions, as confirmed by validating it with GeoEye-1 imagery without further fine-tuning
or training. The performance of the proposed detection system, evaluated for the reference application,
achieves a detection rate of approximately 90% and a false discovery rate of about 40%. Notably, this is
attained using a fully automatic processing chain without geospatial integration with additional information
sources. In conclusion, despite satellite images having limited ground sampling distance and subsequent
lower accuracy of image understanding algorithms, they remain suitable for environmental monitoring
applications from an end-user perspective.

INDEX TERMS Microdump detection, remote sensing, RetinaNet for object detection, InceptionV3 for
classification, GeoEye-1 and Pleiades satellite imagery.
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I. INTRODUCTION

A. OVERVIEW OF THE ENVIRONMENTAL APPLICATION
From 1994 to 2008, the Campania Region in Italy, specif-
ically the agricultural and industrial areas north of the city
of Naples and east of the city of Caserta, experienced a
serious crisis in the municipal solid waste cycle. This crisis,
compounded by the proliferation of illegal manufacturing
activities, made the agricultural areas surrounding urban
centers highly vulnerable to illegal microdumps. Exten-
sive territory-wide surveillance remains necessary today to
identify high-risk areas and prevent the accumulation of
combustible materials prone to causing fires.

Monitoring action is presently coordinated by the Civil
Protection, with support from the regional Government’s
in-house company, SMA Campania, to identify dumping
sites and the Regional Environmental Protection Agency
(ARPAC) to characterize these sites. SMA Campania utilizes
a geographical information system to store and analyze
gathered data. SMA Campania conducts ground patrols at
various intervals in areas most susceptible to illegal dumping.
Given the vast area to be monitored, optimizing available
human resources involves collecting preliminary information
on areas requiring more frequent patrolling.

For this purpose, the territory has been divided into
hexagonal cells. Very High-Resolution (VHR) optical remote
sensing images (with decimetric ground sampling distance)
have been periodically collected to assess the presence or
absence of microdumps in each cell. This information aids
in establishing priority criteria for on-ground inspections by
human operators based on the environmental risk associated
with each cell. On-ground patrols contribute to a more accu-
rate environmental risk assessment, prompting mitigation
actions that involve reporting and describing dumping sites
to the relevant authorities for removal.

This paper discusses a technique capable of automatically
extracting necessary information regarding the presence and
location of microdumps in target cells from VHR optical
satellite images. Expert photointerpreters can further refine
this information or directly employ it in environmental risk
assessments for the cells, aiming to reduce response times
with slightly less precision.

B. OVERVIEW OF THE REFERENCE PROGRESSIVE
MONITORING PROCESS
To comprehend the integration of the proposed detection
technology within the application context, the overall tech-
nological solution is briefly described below, referencing
published works that cover complementary aspects of the
reference progressive monitoring process' (see Fig. 1).

This project aimed to design a progressive and multi-layer
monitoring process and develop a related prototype infor-
mation system [1]. The system’s objective is to provide

1“Progressive monitoring process” refers to a process structured into
subsequent monitoring phases, characterized by decreasing spatial scale,
increasing spatial resolution, revisit times, and accuracy.
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Environmental Protection Institutions with frequently
updated environmental risk maps [2], integrating heteroge-
neous information from crowd-sourced free text data (such
as social media posts) to VHR satellite acquisitions, as previ-
ously proposed in [3]. The proposed progressive monitoring
process comprises three phases. In the initial phase, probable
environmental hazard sites are detected through automatic
analyses of frequently updated big data sources [4]. In the
second phase, these hazards are confirmed via back-office
operations (by photointerpreters and environmental analysts)
[5], aerial surveys, or on-the-field operators (on-ground
patrols). In the final step, the recognized environmental
hazards are confirmed using on-the-field instrumentation,
such as drones [6].

Within the C4E project, big data sources are employed
during the environmental monitoring process detection phase
to determine ground patrol deployment areas [7], where they
have to confirm and characterize sites prone to environmental
hazards. Microdumps constitute one of the primary targets
in this context. The analysis is conducted on cells spanning
tens to hundreds of meters in both orthogonal dimensions,
aligning with the smallest surface unit inspected during
ground patrols.

C. THE PROPOSED MICRODUMP DETECTION SYSTEM
Microdumps are often produced by illegal industrial or
agricultural activities that are unable to dispose of waste
through normal disposal processes or can be accumulated
in temporary moments of crisis in the normal urban waste
disposal cycle. Microdumps can typically range from a few
square meters to tens of square meters. In the most serious
cases, they can reach hundreds of square meters.

Several approaches have been proposed in the scientific
literature for the automatic detection of microdumps in
satellite images, e.g. [8], [9], and [10]. The main weakness
in these methods is that they often lack sufficient numerical
results to effectively estimate their capability in identifying
dumps. It is also important to highlight that, due to the
significant challenge posed by the problem and the resulting
limited performance of image processing algorithms, the
methods used for dump detection in remote sensing images
often involve subsequent analysis by photointerpreters and/or
GIS processing [9]. This process also involves considering
data fusion with predictive model outcomes and/or additional
data sources.

In addition to various proposed techniques for detecting
dumping sites, recently, techniques based on Deep Learning
have been suggested [11], [12], although these are still
in limited numbers. Here, we propose a deep learning
technique to detect microdumps in satellite imagery. The
proposed system comprises two neural networks: the initial
network is based on RetinaNet [13], specialized for detecting
regions containing microdumps, while the second network
utilizes the InceptionV3 model [14] to enhance the detection
through pixel-wise classification. To reach a final decision,
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FIGURE 1. Reference progressive monitoring process.

we employ a fusion rule combining both networks’ outcomes.
As previously said, the case study is concentrated on a
geographically extensive area in the Campania region in Italy,
where illegal microdumps have been significantly impacted.
We constructed a dataset for training the deep learning
system, labeling pansharpened versions of multispectral
images acquired from the Airbus Pleiades satellite mission.
To prove the proposed approach’s multi-mission remote
sensing capability, we also tested the model on Maxar
GeoEye-1 imagery.
This work introduces several novelties, including:
o A dedicated image processing architecture.
« A proven multi-mission remote sensing capability.
o The relation to a wider referenced monitoring process
and technological solution.
o Performance assessment by image understanding and
end-user perspectives.
« A significant application impact (as discussed below).

D. THE MAIN CHALLENGES AFFORDED AND
CONTRIBUTIONS OF THIS PAPER

The microdumps issue not only afflicts Campania but is one
of the most widespread environmental hazards worldwide in
many urban and rural areas. VHR satellite imagery has the
potential for detecting microdumps, but it faces a limitation
in spatial resolution (with a ground sampling distance of
some decimeters in the panchromatic channel), which is
not adequately high for this specific application. Although
information regarding individual microdumps is unreliable,
the combined data at the inspection cell level provides
enough insight to assess environmental risks. This aggregated
information enables the formulation of an informed resource
optimization strategy for on-ground inspections, a crucial
step for facilitating remediation actions. Furthermore, the
detection technology needs to be independent of the mission
due to the low revisit time of a single VHR optical satellite
mission (at most, some acquisitions per month). Finally, the
performance of the detection solution should be evaluated not
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just in terms of image understanding but also about its impact
on the on-ground confirmation process.

This paper aims to:

o Describe a multi-mission image understanding technol-
ogy capable of detecting the presence of microdumps in
VHR optical images obtained from different satellites.

« Situate the solution within a broader progressive moni-
toring process and a wider innovative solution.

o Evaluate the performance of the proposed algorithmic
solution from the perspective of image understanding
and the effectiveness of the aggregated information for
informed ground inspections, confirming and character-
izing the detected sites.

E. ORGANIZATION OF THE PAPER

The rest of the paper is structured as follows: Sect. II provides
an overview of the literature concerning the utilization
of remote sensing data for dumping site detection is
provided. Sect. III describes the case study and data pre-
processing. Sect. IV explains the proposed Deep Learning
architecture. Sect. V reports experiments and their respective
results. Finally, a dedicated section presents the discussion
and conclusions, closing the paper.

Il. RELATED WORK

Detecting microdumps in satellite images presents a diverse
challenge, resulting in an equally varied and somewhat
unsystematic body of related literature. Methods in the
literature focus primarily on utilizing spectral information,
while others integrate spatial features into their analysis. The
first group concentrates on utilizing hyper and multi-spectral
images to recognize waste spectral signatures [9] or analyze
spectral characteristics of the vegetation surrounding or
covering dumping sites [8]. These techniques often pro-
cess individual pixels, focusing only on spectral data and
neglecting spatial context. Object-Based Image Analysis
(OBIA) is based on a higher abstraction level and works on
pixel groups, providing higher semantic content. OBIA-based
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dump detection workflows are explored in [15] and [16].
In [17], although the authors do not explicitly refer to an
OBIA framework, a Random Forest is used for classifying
segmented objects identifying street litter. However, while
considering spatial context, the object-oriented approach
does not always rely exclusively on spatial features. Some
studies, e.g., [18] or more recently [19], attempt to identify
dumping sites, focusing only on spatial characteristics
without an OBIA framework. Spatial information can also
combine with spectral data in more complex ways. For
instance, [10] proposes the Dump Detection Index (DDI),
which combines vegetation indexes with vegetation stress
spatial patterns caused by dumping.

Features distinguishing dumping sites were pre-decided
in all the previously mentioned techniques. However, this
approach has been superseded by Deep Learning (DL)
techniques, which have proven effective in numerous appli-
cations [20]. Despite challenges in labeled data availability,
they show promise in Object Detection [21], [22], [23],
Segmentation and Classification [24], [25], [26] of Remote
Sensing images. Of particular interest for our aims are,
for example, the works that propose Convolutional Neural
Networks (CNNGs) to identify small objects such as vehicles
in aerial and satellite images [27], [28], [29].

DL-based approaches, including CNNs, form the core
of object detection methods. These methods fall into two
main categories: Two-stage detectors like Faster R-CNN
[30], and one-stage detectors like YOLO [31] and Single
Shot Detectors (SSD) [32]. Two-stage detectors are generally
recognized for their superior object localization and recogni-
tion accuracy. In contrast, one-stage detectors are known for
their exceptional inference speed [33], [34]. In a two-stage
approach, the initial stage generates candidate regions likely
to contain objects, effectively filtering out the majority of
negative proposals. Subsequently, the second stage focuses
on classifying these candidates into foreground/background
classes and refining the object localization based on the
proposals generated in the previous stage.

In [12], the authors tried to identify instances of waste
dumped along the banks of the Saint Louis Senegal River
using images captured by a drone and a multi-scale object
detection technique. They labeled 5, 000 images, each with an
average of 5 bounding boxes, and trained an SSD model using
10% of the data for testing purposes. From their qualitative
analysis, they noticed variations in the model’s predictions
depending on the location. The model produced many false
positives due to confusion with non-waste objects like trees.
In [11], a data set of 3, 000 aerial images at 20 c¢m resolution
was used to create a data set used to train and test a multi-scale
CNN architecture consisting of the merge of ResNet50 and
Feature Pyramid Network.

Nothing of these approaches proposes an end-to-end
solution that can work directly on satellite images and
generate bounding boxes of microdumps based on a deep
learning approach. So, to the best of our knowledge, this is
the first solution proposed in the literature in this direction.
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Furthermore, this is the first case of a system that can work
cross-satellites: our system has been trained on images from
the Pleiades and successfully tested on GeoEye-1 without
retraining.

IIl. CASE STUDY AND DATA PREPARATION

In this section, the case study is detailed together with a
description of how images are collected and prepared for the
following steps.

A. VALIDATION AREA AND IMAGERY

The validation area is located in the Campania Region,
specifically north of Naples and east of Caserta (see Fig. 2).
Like those commonly affected by illegal microdumping,
these regions are extensive agricultural areas amidst urban-
ized zones. The problem of illegal microdumping primarily
occurs along roadsides or in empty or vegetated fields within
abandoned industrial areas.

The satellite data used in this study comprises the
pansharpened version of Pleiades and GeoEye-1 multi-
spectral images, with only the RGB bands considered
for both datasets. The images have a ground sampling
distance of 0.50 m per pixel for Pleiades and 0.40 m
for GeoEye-1. All input data have been orthorectified and
radiometrically calibrated. The area has been covered by
many satellite acquisitions on different dates. In particular,
this paper considers Pleiades of May 2016 and GeoEye-1
of May 2020.

Before processing, the input satellite data have been
converted from 16 to 8 bits performing a histogram stretching
operation to avoid excessively bright or dark images, using
as the lower and upper limits, respectively, the 2nd and 98th
percentile values (see Fig. 3).

B. INSPECTION CELLS

The overall territory of interest is divided into a grid of
hexagonal cells (referred to as ‘““inspection cells’’), each with
an apothem of 50 m. These cells represent the smallest
surface that can be comprehensively inspected by a generic
on-ground patrolling team during inspection activities, based
on evaluating the inspection plan by the decision support
system organizing the patrolling tasks.

For several reasons, hexagonal grid cells are preferred
over square grid cells in certain GIS applications. Among
the three regular polygons that can tile the plane (triangles,
squares, and hexagons), hexagons offer the most compact
form, providing the smallest average error in quantizing
the plane and allowing for more efficient storage. Unlike
square and triangle grids, hexagonal grids offer uniform
adjacency; each hexagonal cell has six neighbors, all sharing
an edge with it and having centers exactly equidistant from
its center, thereby reducing edge effects. Additionally, each
hexagonal cell has no neighbors with which it only shares
a vertex [35]. These characteristics have contributed to the
growing popularity of hexagons as a fundamental tool for
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FIGURE 2. Area of interest: the red rectangles represent the images collected for training, and the yellow
rectangle represents the area for the final test.

(b) 8-bit histogram stretched (HS) RGB image

(d) 8-bit HS RGB image histogram

(¢) Original 16-bit RGB image histogram
FIGURE 3. Images before and after 16-bit to 8-bit downscale and histogram stretching.

spatial analysis, including examining land use patterns and The image understanding technology presented in this
wildlife distribution, owing to their ability to represent spatial work aims to provide information regarding the presence or
relationships between adjacent cells more accurately. absence of microdumps in each inspection cell.
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C. GROUND TRUTH GENERATION

One of the most critical aspects of any machine learning
procedure is the availability of large and consistent labeled
datasets for training and testing algorithms. This issue
becomes particularly evident in highly specific applications,
such as dump detection, where published datasets are often
unavailable. The ground truths used in this paper originate
from a previous project called MIDA (Integrated Monitoring
of Illegal Dumping Sites).

The 2016 MIDA project [5] aimed to locate and map areas
covered by waste exclusively using satellite data (specifically,
Pleiades and ErosB missions were employed for monitoring
illegal landfills and microdumps). The surveyed area covered
approximately 1, 500 km? (known as the “Land of Fires”
area). The remote sensing company Mapsat thoroughly
assessed and classified the dumping sites. Subsequently, these
identified areas were validated using complaints from citizens
and on-ground survey reports from SMA Campania.

Based on the results of the MIDA project, a further process
was introduced within the C4E project to extract ground
truth from the identified areas and utilize it to train the deep
learning models proposed in this paper. The ground truth was
explicitly constructed by examining Pleiades images acquired
in May 2016. The proposed detection workflow is designed
for generic urban waste dumping sites (as defined in [5]).

Initially, a preliminary deep learning model was con-
structed using a ““filtered” training set. This original version
of the training set was relatively raw because the perimeters of
the dumping sites did not strictly delineate the waste evidence
but inclusively delimited the entire dumping area of interest.
Consequently, a team of photointerpreters reclassified the
geopolygons, creating boundaries strictly encompassing the
evidence (i.e., only pixels representing waste and their
immediate neighbors). A preliminary deep-learning model
was developed using this refined training set. Despite not
performing very well (estimated false discovery rate of 70%),
it managed to detect some microdumps that were omitted in
the previous photointerpretation work.

Building on the results of this preliminary detection model,
additional photointerpretation work helped identify false
alarms among the positives provided by the algorithm and
newly discovered true positives that were previously omitted.
These “‘new positives”” were added to the final ground truth,
which was then used to train the deep-learning models in this
paper.

The processing steps for ground truth generation are illus-
trated in Fig. 4. Through this described process, 593 bounding
boxes with microdumps were obtained in the training areas.

IV. METHODOLOGY

This section details our methodology to detect microdumps
in satellite images. The detection is achieved by fusing two
methods, Object Detection (OD) and Pixel-Wise Classifi-
cation (PWC), leveraging CNNs and employing a sliding
window approach with specific patch sizes and step sizes.
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OD and PWC operate on the same images, generating lists
of objects and pixel-wise probability maps, respectively. The
final output results from combining these outcomes. Due to
the limited datasets in this domain and the time-consuming
nature of annotations, we utilize Transfer Learning. This
approach employs pre-trained models from large-scale
datasets like ImageNet [36] and COCO [37] to mitigate data
limitations, reduce training time, and yield effective results.

A. OBJECT DETECTION MODEL

For the OD model, we utilize RetinaNet [13], a detector oper-
ating in a one-stage fashion that efficiently detects objects
of varying scales. RetinaNet incorporates backbones such
as ResNet and Feature Pyramid Network (FPN) to extract
multiscale features and two subnetworks for regression and
classification to predict and classify bounding boxes. Focal
Loss is used to address class imbalance, increasing training
efficiency.

In this work, the training is made using the RetinaNet
model with a ResNet50 backbone and COCO weights ini-
tialization, resulting in improved training efficiency. Regions
of Interest (ROIs) are obtained using a sliding window with
a horizontal and vertical step of 250 pixels, each patch being
500 x 500 pixels. Fig. 5 illustrates the OD module.

B. PIXEL-WISE CLASSIFIER

We implement Transfer Learning for PWC by fine-
tuning pre-trained models with unfrozen layers. The stan-
dard Transfer Learning workflow comprises three main
steps: (i) loading the model architecture and pre-trained
weights from the large-scale ImageNet database (with
1,000 classes), (ii) replacing the last fully connected layer
with a task-specific classification layer (in our case, distin-
guishing between ‘dump’ and ‘non-dump’), and (iii) training
the compiled model. In our approach, the model is fine-tuned
with L2-regularization that penalizes large weight values,
shifting them to 0. This helps prevent overfitting by keeping
less significant features and enhancing model generalization,
thereby improving prediction accuracy.

In this context, we have opted for InceptionV3 as our
pre-trained model [14]. To tackle class distribution imbalance
in skewed datasets, the weighted cross-entropy loss is used
during training to assign higher weights to the minority class.
ROIs are determined using a sliding window with a horizontal
and vertical step of 2 pixels, with each patch measuring
24 x 24 pixels. Fig. 6 illustrates the PWC module.

C. FUSION RULE
The OD algorithm generates an XML file containing
bounding boxes around positive samples. The grayscale
probability map obtained from PWC consists of values
rescaled within the [0, 255] range, which is then thresholded
at 254, yielding a binary mask.

This binary mask is combined with the OD results to
reduce false positives. A bounding box is retained if at least
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one of its pixels in the binary mask is white. The outcome is
anew XML file containing bounding boxes corresponding to
areas detected using the fusion rule. An overview of the entire
system is presented in Fig. 7.

V. EXPERIMENTS AND RESULTS

In this study, we conducted two experiments. The first
experiment aimed to assess the effectiveness of the proposed
approach using available data. The second experiment aimed
to validate the performance of the approach in a real-world
scenario.

A. DATASET FOR TRAINING
To train and validate the model, we used 19 Pleiades
image tiles from May 2016, including both urban and
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suburban areas, with dimensions of 6,000 x 4, 000 pixels
(3.0 km x 2.0 km).

For the PWC, patch sizes of 24 x 24 pixels were extracted
from these 19 image tiles. This dimension balances capturing
microdump sizes (often identified as white spots of 12 x
12 pixels, see Fig. 8) and larger patches that might include
irrelevant information for dump localization. Positive sam-
ples were manually chosen from the ground truths provided
with the images. About 200 non-overlapping positive samples
per image were extracted. To diversify the dataset and
increase robustness, each positive sample underwent a small
multi-directional shift of 5 pixels horizontally and vertically,
resulting in 8 variations per sample (as shown in Fig. 9). This
augmentation technique helped enhance dataset variability,
totaling around 16, 293 positive samples, and improve the
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FIGURE 8. An example of microdumps positive patches.

model’s ability to generalize. To ensure a balanced dataset, distance from each other (refer to Fig. 10), maintaining an
negative samples were strategically selected at a certain imbalance ratio of 1 : 4 between positives and negatives.
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Regarding the OD dataset, each image was divided into
sub-images of size 500 x 500 pixels, with a 250-pixel overlap
in both horizontal and vertical directions. Bounding boxes
were automatically generated based on the provided ground
truth to identify microdumps. Any bounding boxes falling on
the sub-image borders were not considered. Approximately
250 sub-images per sector were obtained on average, totaling
4,715 sub-images (an example is shown in Fig. 11).

B. MODEL VALIDATION BY IMAGE UNDERSTANDING
PERSPECTIVE

To enhance the robustness of the proposed approach, 6-fold
cross-validation was utilized to split the images into training
and test sets, creating 6 distinct training sets. Consequently,
6 models were generated for both the PWC and OD networks.
This process involved employing 16 images for the training
phase, with 13 allocated for training and 3 for validation. The
remaining 3 images constituted the test set to evaluate the
performance of each model.

This experiment’s primary aim was to validate each stage
within the proposed model thoroughly. Therefore, each
trained model was evaluated by employing patches and
sub-images extracted from its respective test set for both
PWC and OD. The final fusion stage was also tested for each
model pair using the corresponding test set. To assess the
fusion algorithm, the evaluation was not limited to patches
and sub-images extracted from the test set but extended to
applying each trained model across the entire images of the
corresponding test set via a sliding window technique.

RetinaNet models for OD were trained using transfer
learning from the COCO dataset with Stochastic Gradient
Descent (SGD). Network weights were updated in batches
of 8 patches using the back-propagation algorithm, starting
with an initial learning rate of 10~*. The learning process
was stopped after 100 epochs, with a patience setting of
10 epochs. Regarding PWC, Inceptionv3 networks were
trained using transfer learning from the ImageNet dataset
with SGD. Network weights were updated in batches of
32 patches using the back-propagation algorithm, starting
with an initial learning rate of 1072, The training was stopped
after 3, 000 epochs, with a patience setting of 300. In both
cases, patience values were experimentally determined, being
the compromise between training precision and duration.

The results regarding precision and recall for patch clas-
sification and the final fusion performance were presented.
The evaluation also included mean Average Precision (mAP)
for the object detection phase. The results obtained from the
6 PWC and OD models are detailed for each fold in Tables 1
and 2 respectively. Table 3 exhibits the results achieved on the
entire images across the 6 test sets after the fusion procedure.

Although it would be interesting to understand the
significance of such results in the context of dump detection
literature, the comparison is not straightforward. As high-
lighted in the introductory sections, the literature in this
field is characterized by extreme variability in terms of
data used, dump typologies (size, contents, etc.), datasets,
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TABLE 1. Image understanding results on the six test sets for the PWC.

Fold Precision Recall
1 0.8954 0.7035
2 0.9029 0.7659
3 0.8343 0.7176
4 0.8150 0.6594
5 0.8980 0.6918
6 0.8269 0.7840
Mean 0.8621 0.7204
SD 0.0407 0.0468

and metrics employed. This makes direct comparisons very
challenging, especially because, unlike in other fields, there
are currently no standard benchmark datasets for machine
learning available. Furthermore, many studies do not report
quantitative results but only qualitative ones (e.g. [10],
[12]), or they present results only after further analyses,
such as that with GIS tools [9]. Some other papers report
numerical results, but differences in datasets do not allow for
comparative analysis. For example, in [11] an f-measure of
nearly 0.88 is reported. At first glance, these performances
are much superior to ours, which exhibit an f-measure of
barely 0.46 (Table 3). However, it should be considered
that the comparison is not fair, as many factors are playing
against our experimental approach. First, the data employed
in [11] are aerial images with a resolution of 0.20 m, whereas
the satellite images used here have a resolution of 0.40 or
0.50 m. Secondly, the purpose of the paper presented in
[11] is not to detect all dumps in a given area but to
determine if square images of different dimensions (from
120 m x 120 m to 200 m x 200 m) contain or not dumps.
Furthermore, in [11], the disproportion between positives
and negatives is not representative of real-world scenarios,
as 990 positives and only 2, 000 negatives are used, for a
ratio of approximately 1 to 2. Moreover, since the negative
instances are so few, although they are chosen to represent
as many different land cover types as possible in a remote
sensing image, they cannot adequately represent the typical
variability of the scene. In [4], results are also reported. It’s
worth noting that when the technique is used to distinguish
between patches with and without dumps, with a partial
imbalance of 1 to 14 and modeling only a subset of the
possible land covers present in a generic remote sensing
image, in an experimental setup of significance similar to
the one proposed in [11], results are quite good, with an
f-measure of 0.75. However, when the technique is applied
to a more extended validation image of 0.9 km x 1.2 km
and performance measures for object detection are employed,
as done in the present study, the performance drops to an
f-measure of 0.22. Such considerations show how different
approaches of validation can quantitatively impact results.

C. MODEL VALIDATION BY END-USER PERSPECTIVE
The performance of the detection technology in locating
individual microdumps holds significance as ground patrols
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FIGURE 9. Generation of positive samples through multi-directional shift.

FIGURE 10. Example of negative patches used for image classification.

typically inspect broader areas instead of individual sites.
This approach arises from the need to confirm spill sites
presence and explore unreported or satellite-undetected
locations. Basically, satellite detection has limitations in
detection performance since satellite images are infrequently
updated due to long revisit times and high acquisition
costs. This contributes to evaluating the detection system
performance in line with environmental requirements.

The primary goal of this system is to reduce the cost of
manual photointerpretation or physical inspection of dump-
ing sites. Assessing results within the hexagonal ‘“‘inspection
cell” framework (as defined in Sect. III-B) proves useful in
this context.

End users must associate a commission cost (unproductive
inspection) with an erroneous inspection by photointerpreters
or ground patrols of a cell without dumping sites, and
omission cost (missed intervention) with uninspected cells.
Commission cost varies based on the erroneously inspected
site location in case of ground patrolling or the photointer-
pretation cost in case of confirmation by photointerpreters.

79594

TABLE 2. Image understanding results on the six test sets for the OD.

Fold Precision Recall mAP

1 0.3267 0.5568 0.2615
2 0.3905 0.5775 0.2891
3 0.2926 0.4955 0.1846
4 0.4159 0.2919 0.2163
5 0.4230 0.4939 0.3692
6 0.2835 0.6039 0.3908
Mean 0.3554 0.5033 0.2853
SD 0.0623 0.1125 0.0820

Omission cost is evaluated ex-ante and relies on the
environmental risk of a cell. Estimating these costs is highly
scenario-dependent and necessitates estimating commission
and omission probabilities. Our analysis focuses on precision
and recall to address these considerations.
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FIGURE 11. Example of sub-images used for Object Detection.

TABLE 3. Image understanding results on the six test sets after the fusion
procedure.

Fold Precision Recall
1 0.3710 0.5227
2 0.6364 0.4930
3 0.4000 0.4685
4 0.5205 0.2360
5 0.5461 0.4512
6 0.3727 0.5325
Mean 0.4745 0.4506
SD 0.1096 0.1096

We assessed model performance in a test area referred
to as “Area 3,” covering 25 km?> north of Naples
between the municipalities of Acerra, Caivano, and Afragola
(see Figs. 2 and 12). Despite the model being trained
on Pleiades data, the test performance is evaluated using
GeoEye-1 images from May 2020 for cross-sensor validation.

The area was divided into 3, 111 hexagonal grid cells, each
50 m of apothem and 8, 660 m? of area. A photointerpreter
analyzed each cell to identify microdumps, establishing the

VOLUME 12, 2024

ground truth for validation. The model validation strategy is
graphically outlined in Fig. 13.

To evaluate our approach from an application standpoint,
all hexagons intersecting with a polygon returned by the
algorithm are considered positive, while those without inter-
sections are considered negative. Comparing this outcome
with ground truths established by photointerpreters allows the
identification of true/false positives/negatives.

As mentioned before, using 6 distinct training sets,
6 classifiers were developed for PWC and OD networks.
Each individual classifier produces different results and is
separately validated against the same ground truth. Results
from the first classifier, overlaid on the test area, are shown in
Fig. 14, whereas its validation on inspection cells in Fig. 15.

Precision and recall were evaluated for each classifier
and detailed in Table 4. The average false discovery rate
is around 25.46%, i.e., approximately one cell in four is
falsely indicated as containing microdumps. On the other
hand, the detection probability is 47.86%, implying nearly
half of the cells affected by microdumps were submitted to
photointerpreters by the proposed detection system.

The overall performance is not particularly impressive,
especially regarding the recall values. In our ground truth,
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out of 3,111 cells, only 506 were confirmed to contain
microdumps (similar statistics were calculated over the
extended ROI spanning Naples and Caserta provinces). Due

to the considerable variation in recall among individual
79596

models, an ensemble approach was employed to improve
recall at the expense of precision. This approach considers a
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TABLE 4. Precision and recall by the end-user perspective for the
6 classifiers, performed on the inspection cells.

Legend
Fold 1 - Detected Area

Legend
¢ Ground Truth
Fold 1 - Detected Area
Grid Classification
[_1 New Positive
|| Confirmed Positive
False Positive

FIGURE 15. End-user validation of the classifier trained on the first fold, performed on inspection cells.

Fold Precision Recall
1 0.6938 0.6047
2 0.7150 0.5553
3 0.8202 0.2885
4 0.8325 0.3241
5 0.7119 0.4150
6 0.6990 0.6838
Mean 0.7454 0.4786
SD 0.0633 0.1600

cell positive if at least one of the six models labels it as such.
Additionally, using all six classifiers together for ensemble
classification is an acceptable solution as the validation set,
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TABLE 5. Precision and recall by the end-user perspective for the
ensemble classifier, performed on the inspection cells.

Fold Precision Recall

Ensemble 0.5876 0.9150

i.e., Area 3 image, was not used to train these classifiers. The
proposed ensemble strategy, as depicted in Tables 5 and 6,
notably boosts recall to 91.50%, whereas precision decreases
to 58.76% (resulting in a false alarm rate of 41.24%). Results
from the ensemble classifier, overlaid on the test area, are
shown in Fig. 16, whereas its validation on inspection cells
in Fig. 17.

These performance values effectively meet the users’
requirements. This detection product enables environmental
monitoring companies to identify approximately 91.50% of
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FIGURE 17. End-user validation of the ensemble classifier, performed on inspection cells.

TABLE 6. Confusion matrix for the ensemble classifier over the
inspection cells.

Estimated  Estimated
Positives Negatives
(Tot. Pop.)  (788) (2323)
True Posi- (506) 463 43
tives
True Nega-  (2605) 325 2280
tives

the inspection cells affected by microdumps, neglecting only
one positive cell among tens. This yields a commission
error of around 41.34%, meaning roughly that four cells
per ten are needlessly inspected, achieved through a fully
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automated data processing chain. The potential of this
information significantly expands when photointerpreters
are systematically or occasionally engaged (to reduce false
alarms drastically) and data are fused with additional
geographic information layers. Both approaches relate to
other information sources and observed historical trends
on each inspection cell, which is expected to improve
precision and recall. Quantifying these aspects goes beyond
the scope of this paper. However, these considerations allow
readers to reasonably interpret these performance values as a
conservative lower bound.

V1. DISCUSSION AND CONCLUSION
The objective of this paper was to present an approach
to analyze VHR optical satellite images for microdump
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detection, applicable in real-world contexts. This application
focuses on identifying areas posing high environmental risks,
requiring inspection to confirm the presence and precise
locations of microdumps for subsequent remediation.

A specific deep learning solution was introduced to address
the application requirements, integrating two approaches:
pixel-oriented using InceptionV3 and object-oriented based
on RetinaNet. The deep learning models were trained using
data from the Airbus Pleiades multispectral satellite mission
and validated on Maxar GeoEye-1 data, demonstrating the
multi-mission remote sensing capability of the proposed
solution. This capability is crucial due to the low revisit time
of the VHR satellites within the same mission.

Regarding the future development directions of this work,
the following considerations can be formulated.

The limitations of VHR optical satellite data, including the
restricted ground sampling distance, result in poorly accurate
image understanding products, which are nevertheless pre-
cious from an application point of view. An improvement in
detection accuracy can certainly be achieved by evaluating
not only satellite data but also the results of previous
surveys and the morphology of the territory (for example,
proximity to roads). The main application of satellite data in
this field, in a broader analysis context that also integrates
additional sources of information, is to support end users
in identifying the areas at greatest risk of microdumps, for
subsequent confirmation using on-ground patrolling actions.
The expectation is that the effectiveness of such on-ground
actions can be significantly improved, thanks to the use of
information extracted from remote sensing data.

The integration of prediction model outcomes with
complementary information sources and quantitative impact
estimation on the performance of the overall monitoring
process will be the subject of future works.
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