

BOOK OF ABSTRACTS AND SHORT PAPERS

14th Scientific Meeting of the Classification and Data Analysis Group Salerno, September 11-13, 2023

edited by

Pietro Coretto Giuseppe Giordano Michele La Rocca Maria Lucia Parrella Carla Rampichini

SCIENTIFIC PROGRAM COMMITTEE

Carla Rampichini (chair, University of Florence - Italy) Claudio Agostinelli (University of Trento - Italy) Michela Battauz (University of Udine - Italy) Antonio Canale (University of Padua - Italy) Carlo Cavicchia (Erasmus University Rotterdam - Netherlands) Claudio Conversano (University of Cagliari - Italy) Eustasio del Barrio (University of Valladolid - Spain) Roberto Di Mari (University of Catania - Italy) Stefania Fensore (University of "G. d'Annunzio" - Italy) Nial Friel (University College Dublin - Ireland) Maria Giovanna Ranalli (University of Perugia - Italy) Leonardo Grilli (University of Firenze - Italy) Luigi Grossi (University of Padua - Italy) Christian Hennig (University of Bologna - Italy) Mia Hubert (KU Leuven - Belgium) Alfonso Iodice D'Enza (University of Naples "Federico II" - Italy) Julien Jacques (University of Lyon - France) José Joaquim Dias Curto (ISCTE-Instituto Universitário de Lisboa-Portugal) Michele La Rocca (University of Salerno - Italy) Silvia Montagna (University of Turin - Italy) Barbara Pawelek (University of Cracow - Poland) Fulvia Pennoni (University of Milano-Bicocca - Italy) Mario Rosario Guarracino (University of Cassino - Italy) Katrijn Van Deun (University of Tilburg - Netherlands) Simone Vantini (Politecnico di Milano - Italy) Donatella Vicari (Sapienza University of Rome - Italy) Helga Wagner (Johannes Kepler University Linz - Austria) Hiroshi Yadohisa (Doshisha University - Japan)

LOCAL PROGRAM COMMITTEE

Michele La Rocca (chair, University of Salerno - Italy)

Pietro Coretto (University of Salerno - Italy) Giuseppe Giordano (University of Salerno - Italy) Paolo Rocca Comite Mascambruno (University of Salerno - Italy) Marcella Niglio (University of Salerno - Italy) Maria Lucia Parrella (University of Salerno - Italy) Marialuisa Restaino (University of Salerno - Italy) Domenico Vistocco (University of Naples "Federico II" - Italy) Maria Prosperina Vitale (University of Salerno - Italy)

CLADAG 2023 BOOK OF ABSTRACTS AND SHORT PAPERS: 14th Scientific Meeting of the Classification and Data Analysis Group, Salerno, September 11-13, 2023 edited by Carla Rampichini, Michele La Rocca, Pietro Coretto, Giuseppe Giordano, Maria Lucia Parrella

Front cover: Genome sequence map, chromosome architecture and genetic sequencing chart abstract data, © Tartila / Shutterstock

© 2023 Published by Pearson Education Resources, Italia www.pearson.it ISBN: 9788891935632

INDEX

Preface	XVII
Plenary Session	1
Francesco Bartolucci, Michael Greenacre, Silvia Pandolfi and Fulvia Pennoni Discrete latent variable models: recent advances and perspectives	3
Gerda Claeskens, Sarah Pirenne, Snigdha Panigrahi and Yiling Huang Selective inference after variable selection by the randomized group Lasso method	7
Fancesca Greselin To get the best, tame the beast: robust ML estimation for mixture models	8
Thomas Kneib	0
Rage against the mean - an introduction to distributional regression	12
Sofia Charlotta Olhede	
On graph limits as models for interaction data	13
Invited Papers	15
Alessandro Albano, Mariangela Sciandra and Antonella Plaia	
Ensemble method for text classification in medicine with multiple rare	
classes	17
Alessandro Albano, Mariangela Sciandra and Antonella Plaia Distance-based aggregation and consensus for preference-approvals	21
Marco Alfò, Dimitris Pavlopoulos and Roberta Varriale	
Flexible employment, a machine learning approach	25
Federico Ambrogi and Matteo Di Maso	
Clinically useful measures in survival analysis: the restricted mean	• •
survival time as an alternative to the hazard ratio	29
Jose Ameijeiras-Alonso Data-driven smoothing parameter selection for circular data analysis	33
	33
Laura Anderlucci, Silvia Dallari and Angela Montanari View it differently: finding groups in microbiome data	34
Rabea Aschenbruck, Gero Szepannek and Adalbert F. X. Wilhelm	
Random-based initialization for clustering mixed-type data with	
the k-prototypes algorithm	38
Filippo Ascolani and Valentina Ghidini	
Posterior clustering for Dirichlet process mixtures of Gaussians	
with constant data	42

Vincent Audigier and Ndèye Niang	
Multiple imputation for clustering on incomplete data	46
Alejandra Avalos-Pacheco and Roberta De Vito	
Integrative factor models for biomedical applications	50
Silvia Bacci, Bruno Bertaccini, Carla Galluccio, Leonardo Grilli and Carla Rampichini	
Test equating with evolving latent ability	54
Michela Baccini, Alessandra Mattei, Elena Degli Innocenti, Giulio Biscardi and Aitana Lertxundi	
Causal inference on the impact of extreme ambient temperatures on	
population health	58
Zsuzsa Bakk	
Measurement invariance testing of latent class models using residual statistics and likelihood ratio test	61
Falco J. Bargagli-Stoffi, Costanza Tortù and Laura Forastiere Network interference and effect modification	65
	03
Francesco Barile, Simonón Lunagómez and Bernardo Nipoti Flexible modelling of heterogeneous populations of networks:	
a Bayesian nonparametric approach	69
Mario Beraha and Jim E. Griffin	
Normalized latent measure factor models	70
Silvia Bianconcini and Silvia Cagnone	
Estimation issues in multivariate panel data	74
Alessandro Bitetto and Paola Cerchiello	
The nexus between ESG and initial coin offerings: evidence from text analysis	78
Laura Bocci and Donatella Vicari	
A clustering model for three-way asymmetric proximity data	82
Ilaria Bombelli, Ichcha Manipur and Maria Brigida Ferraro	
Cluster analysis for networks using a fuzzy approach	86
Davide Buttarazzi and Giovanni C. Porzio	
Visualizing anomalies in circular data	90
Andrea Cappozzo, Chiara Masci, Francesca Ieva and Anna Maria Paganoni Model-based clustering of right-censored lifetime data with frailties	
and random covariates	91
Michelle Carey and Catherine Higgins	
Clustering imbalanced functional data	95
Alessandro Casa, Thomas Brendan Murphy and Michael Fop	
Partial membership models for high-dimensional spectroscopy data	99

Fabio Centofanti, Antonio Lepore and Biagio Palumbo	
Sparse clustering for functional data	103
Yunxiao Chen, Motonori Oka and Matthias von Davier	
Interpretable and accurate scaling in large-scale assessment: a variable	
selection approach to latent regression	107
Katharine M. Clark and Paul D. McNicholas	
Clustering three-way data with outliers	111
Roberto Colombi and Sabrina Giordano	
A two-component markov switching regression model	115
Federica Conte and Paola Paci	
The broad phenotype-specific applications of the network-based SWIM tool	119
Houyem Demni, Pierre Miasnikof, Alexander Y. Shestopaloff, Cristián Bravo and Yuri Lawryshyn	
Testing graph clusterability: a density based statistical test for directed graphs	123
Anna Denkowska, Krystian Szczfôsny, Joao Paulo Vieito and Stanisław Wanat	
Deep neural network in the modeling of the dependence structure in risk	
aggregation	124
Marco Di Marzio, Chiara Passamonti and Charles Taylor	
Circular regression with measurement errors	128
Marco Di Zio, Romina Filippini, Gaia Rocchetti and Simona Toti	
Classification tree to improve data quality in official statistics	132
Rosa Fabbricatore and Maria Iannario	
Uncertainty and response style in latent trait models to assess emotional	
intelligence of elite swimmers	136
Rosa Fabbricatore, Roberto Di Mari, Zsuzsa Bakk, Mark de Rooij and Francesco Palumbo	
Three-step rectangular latent Markov modeling based on ML correction	140
Alessio Farcomeni, Alfonso Russo and Marco Geraci	
Mid-quantile regression for discrete panel data	144
Matteo Farnè	
Trimmed factorial k-means	148
Florian Felice and Christophe Ley	
Estimation of team's strength for handball games predictions	152
Peter Filzmoser and Marcus Mayrhofer	
Outlier explanation based on Shapley values for vector- and matrix-valued observations	156

Lara Fontanella, Emiliano del Gobbo and Alex Cucco	
Identification of misogynistic accounts on Twitter through Graph	150
Convolutional Networks	159
Giacomo Francisci and Anand Vidyashankar	
Depth functions for tree-indexed processes	163
Carla Galluccio, Matteo Magnani, Davide Vega, Giancarlo Ragozini and Alessandra Petrucci	
Analysing the effect of different design choices in network-based topic detection	164
Luis A. García-Escudero, Christian Hennig, Agustín Mayo-Iscar, Gianluca Morelli and Marco Riani	
A proposal for the joint automated detection of clusters and anomalies	168
V. G. Genova, C. Edling, H. Mondani, A. M. Rostami and M. Tumminello	
Mobility across crimes: statistically validated networks and temporal	
pattern recognition	172
Paolo Giordani, Susanna Levantesi, Andrea Nigri and Virginia Zarulli	
A cohort study on the gender gap in mortality through the Tucker3 model	176
Luca Greco, Giovanna Menardi and Marco Rudelli	
Trimmed kernel mean shift	180
Bettina Grün, Thomas Petzoldt and Helga Wagner	
Modeling zone diameter measurements to infer antibiotic susceptibility	
of bacteria	184
Julien Jacques and Francesco Amato	
Clustering longitudinal ordinal data	185
Daniyal Kazempour and Peer Kröger	
"You call it a manifold, I call it a subspace" - selected examples on the	
interface between computer science and statistics in the context of	
clustering and manifold learning	187
Annika M. T. U. Kestler, Nensi Ikonomi, Silke D. Werle, Julian D. Schwab, Friedhelm Schwenker and Hans A. Kestler	
Sparse rule generating fold-change classification for molecular	
high-throughput profiles	188
Silvia Komara, Martina Košiková, Erik Šoltés and Tatiana Šoltésová	
Comparison of the households' work intensity in Slovakia and Czechia	
through least squares means analysis based on GLM	192
Arnost Komárek	
Model based clustering procedures for multivariate mixed type longitudinal data	193

Tomasz Kwarciński, Paweł Ulman	
Inequality, populism, and unfairness: a comparison of unfair income	
inequalities in Poland and Norway	196
Francesco Lagona and Marco Mingione	
Segmenting toroidal time series by nonhomogeneous hidden	
semi-Markov models	197
Roland Langrock and Sina Mews	
How to build your latent Markov model: the role of time and space	201
Paweł Lula, Zsuzsanna Géring, Mńagdalena Talaga, Ildikó Dén-Nagy and Réka Tamássy	
The comparative analysis of publication activity in Hungary and Poland in the field of economics, finance and business	205
Johan Lyrvall, Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser and Jouni Kuha An R package for multilevel latent class analysis with covariates	206
R. Neal Mackenzie and Paul D. McNicholas	
Longitudinal hidden Markov models: problems and methods	210
Matteo Magnani, Matias Piqueras, Alexandra Segerberg, Davide Vega and Victoria Yantseva	
Cluster analysis for the study of online visual communication	214
Ichcha Manipur, Ilaria Granata, Lucia Maddalena and Mario R. Guarracino Cluster analysis of cancer metabolic network ensembles	218
Carlo Metta, Marco Fantozzi, Andrea Papini, Gianluca Amato, Matteo Bergamaschi, Silvia Giulia Galfrè, Alessandro Marchetti, Michelangelo Vegliò, Maurizio Parton and Francesco Morandin	
Improving performance in neural networks by dendrite-activated	
connection	219
Rodolfo Metulini, Francesco Biancalani and Giorgio Gnecco	
The Generalized Shapley measure for ranking players in basketball:	
applications and future directions	223
Rouven Michels, Timo Adam and Marius Ötting Tree-based regression within a hidden Markov model framework	227
Boris Mirkin	
Scoring distances between equivalence and preference relations	231
Fabio Morea and Domenico De Stefano	
Evaluation of the performance of a modularity-based consensus	
community detection algorithm	234

Vincenzo Nardelli and Niccolò Salvini	
Assessing and improving data quality in open spatial data: a case study with ANAC data	238
M. Rosário Oliveira, Diogo Pinheiro and Lina Oliveira	200
Visualizing interval Fisher Discriminant Analysis results	239
Niels Lundtorp Olsen, Alessia Pini and Simone Vantini	
Nonparametric local inference for functional data defined on manifold domains	242
Silvia Pandolfi and Francesco Bartolucci Case-control variational inference for large scale stochastic block models	246
Francesca Panero Issues with sparse spatial random graphs	250
Barbara Pawelek and Maria Sadko Corporate bankruptcy prediction: application of statistical learning methods	254
Daniele Pretolesi, Andrea Vian and Annalisa Barla Using machine learning and AI in science of science	255
Pascal Préa	
Distances, orders and spaces	259
Antonio Punzo, Luca Bagnato and Salvatore Daniele Tomarchio Model-based clustering via parsimonious mixtures of dimension-wise scaled normal mixtures	263
Monia Ranalli and Roberto Rocci Model-based simultaneous classification and reduction for three-way ordinal data	264
Jakob Raymaekers and Peter J. Rousseeuw The cellwise Minimum Covariance Determinant estimator	268
Maurizio Romano and Roberta Siciliano A new accurate heuristic algorithm to solve the rank aggregation problem	269
with a large number of objects Jorge Rueda, Maria del Mar Rueda, Ramón Ferri and Beatriz Cobo Using ML techniques for estimation with non-probabilistic survey data	209 273
Ana Santos, Sónia Dias, Paula Brito and Paula Amaral Multiclass classification of distributional data	276
Lorenzo Schiavon	
Latent Bayesian clustering for topic modelling	280
Michael G. Schimek, Bastian Pfeifer and Marcus D. Bloice	
A novel multi-view ensemble clustering framework for cancer subtype discovery	284

Francesco Schirripa Spagnolo, Gaia Bertarelli, Nicola Salvati, Donato Summa, Monica Scannapieco, Stefano Marchetti and Monica Pratesi	
Reducing selection bias in non-probability sample by Small Area Estimation	288
Pedro Duarte Silva, Peter Filzmoser and Paula Brito	
Sparse and robust estimators for outlier detection in distributional data	292
Andrea Sottosanti, Sara Agavni' Castiglioni, Stefania Pirrotta, Enrica Calura and Davide Risso	
Clustering genes spatial expression profiles with the aid of external biological knowledge	296
Arthur Tenenhaus, Michel Tenenhaus and Theo Dijkstra Structural equation modeling with latent/emergent variables: RGCCAc	300
Yoshikazu Terada	
On some properties of reconstructed trajectories from sparse	
longitudinal data	301
Daniel J.W. Touw, Patrick J.F. Groenen, Ines Wilms and Andreas Alfons Clusterpath Gaussian graphical modeling	302
Paweł Ulman, Małgorzata Ćwiek and Maria Sadko	
Housing poverty in Europe. Multidimensional analysis	305
Anand Vidyashankar, Fengnan Deng, Giacomo Francisci and Xiaoran Jiang Efficiency and robustness in supervised learning	306
Frédéric Vrins	
Optimal and robust combination of forecasts via constrained optimization and shrinkage	307
Gabriel Wallin, Yunxiao Chen and Irini Moustaki	
DIF analysis with unknown groups and anchor items	308
Felix M. Weidner, Mirko Rossini, Joachim Ankerhold and Hans A. Kestler	
Constraint-based attractor search in Boolean networks using quantum	
computing	309
Michio Yamamoto and Yoshikazu Terada	
Clustering for sparsely sampled longitudinal data based on basis expansions	312
Naoto Yamashita	
Two extensions of extended redundancy analysis for exploratory data analysis	313
Giorgia Zaccaria	
Ultrametric Gaussian Mixture models with parsimonious structures	314
Li-Chun Zhang	
Using retail transactions for consumer price index and expenditure statistics	318

Contributed Papers	323
Giuseppe Alfonzetti, Luca Grassetti and Laura Rizzi Propensity towards Master's degree: choices of northern students after BAs?	325
Giuseppe Alfonzetti, Luca Grassetti and Laura Rizzi Classifying northern Italian students in their transition to Master degree	329
Rosa Arboretti, Elena Barzizza, Nicolò Biasetton and Marta Disegna Customer satisfaction through time: structured time series from sentiment analysis of TripAdvisor data	333
Roberto Ascari and Alice Giampino A flexible topic model	334
Golnoosh Babaei, Paolo Pagnottoni and Thanh Thuy Do Explainable machine learning for lending default classification	338
Elena Barzizza, Riccardo Ceccato, Solomon Harrar, Fortunato Pesarin and Luigi Salmaso	
A multivariate permutation test for association <i>Michela Battauz</i>	342
A competing risk analysis of academic careers with students' ability and speed as predictors	343
Andriette Bekker, J.T. Ferreira, J. Pillay and M. Arashi Bayesian analysis for a graphical t-model	347
Marco Berrettini, Giuliano Galimberti, Thomas Brendan Murphy and Saverio Ranciati Modelling soccer players field position via mixture of Gaussians with flexible weights	351
Antonella Bianchino, Daniela Fusco, Paola Giordano, Maria Antonietta Liguori, Maria Carmina Palma and Donato Summa	001
Tourism as support in economic development of inner areas: a multi-sources approach	355
Luisa Bisaglia and Francesco Lisi SARIMA models with multiple seasonality	358
Stefano Bonnini and Michela Borghesi Adoption of 4.0 technologies and related obstacles. Application of a multivariate nonparametric test for categorical variables	362
<i>Giuseppe Bove</i> An application of asymmetric multidimensional scaling to the VQR 2015-2019 data	366

Luca Brusa and Fulvia Pennoni	
Improving clustering in temporal networks through an evolutionary algorithm	370
Andrea Carta	
A support vector machine approach to create oblique decision trees	
for regression	374
Giulia Cereda, Fabio Corradi and Cecilia Viscardi Comparing soft classification methods for the rare type match problem	378
Annalisa Cerquetti Bayesian Shannon entropy estimation under normalized inverse Gaussian priors via Monte Carlo sampling	382
Lax Chan and Aldo Goia	
Goodness-of-fit test for single functional index model	386
Silvia Columbu, Nicola Piras and Jeroen K. Vermunt Multilevel cross-classified latent class models	390
Giulia Contu, Luca Frigau, Marco Ortu and Sara Pau Multivariate regression tree to investigate the Italian mortality rates	394
Luca Coraggio and Pietro Coretto Empirical analysis of the quadratic scoring for selecting clustering solutions	398
Marcella Corduas and Domenico Piccolo Classification of daily streamflow data: a study on regime changes	402
Noemi Corsini and Giovanna Menardi Modal clustering for categorical data	406
Cristina Davino, Tormod Næs, Rosaria Romano and Domenico Vistocco The use of principal components in quantile regression: a simulation study	410
Antonio De Falco and Antonio Irpino An interdisciplinary methodology for socio-economic segregation analysis	414
Houyem Demni and Simona Balzano Visualizing classification results: graphical tools for DD-classifiers	418
Claudia Di Caterina	
Detecting the positions of nonconsensus amino acids in HIV patients by marginal likelihood thresholding	419
Davide Di Cecco, Andrea Tancredi and Tiziana Tuoto	
One-inflated Bayesian mixtures for population size estimation	423
Marta Di Lascio and Roberta Pappadà	
Cluster analysis and conditional copula: a joint approach to analyse energy demand	427

Marta Di Lascio, Fabrizio Durante and Aurora Gatto Hierarchical percentile clustering to analyse greenhouse gas emissions	
from agriculture in European Union	431
Cinzia Di Nuzzo and Salvatore Ingrassia Maximum likelihood approach to parameter selection in the spectral clustering algorithm	435
José G. Dias Finite mixture models: a systematic review	439
Francesco Dotto, Roberto Di Mari, Alessio Farcomeni and Antonio Punzo Measurement invariance: a method based on latent Markov models	441
Niccolò Ducci, Leonardo Grilli and Marta Pittavino <mark>A comparison between the varying-thresholds model and quantile regression</mark>	445
Augusto Fasano, Niccolò Anceschi, Beatrice Franzolini and Giovanni Rebaudo Efficient computation of predictive probabilities in probit models via expectation propagation	449
Donata Favaro and Anna Giraldo How women react to their partners' work instability. The added-worker effect	453
Carlina C. Feldmann, Sina Mews, Rouven Michels and Roland Langrock Inference on the state distribution in periodic hidden Markov models	457
Giuseppe Feo, Francesco Giordano, Marcella Niglio, Sara Milito and Maria Lucia Parrella	
Testing clusters of locations in spatial dynamic panel data models Beatrice Franzolini, Laura Bondi, Augusto Fasano and Giovanni Rebaudo Bayesian forecasting of multivariate longitudinal zero-inflated counts:	461
an application to civil conflict	465
<i>Francesco Freni and Giovanna Menardi</i> Efficient disentangling γ-ray sources from diffuse background in the sky map	469
Luca Frigau, Giulia Contu, Marco Ortu and Andrea Carta A method to validate clustering partitions	473
Flora Fullone, Gianmarco Farina, Enza Compagnone, Mirella Morrone and Gioacchino de Candia Analysis of the need for working timber starting from Istat industrial	
production data	477
Ravi Kumar Gangadharan, Vanessa Petrarca, Maria Chiara Pagliarella and Giovanni C. Porzio	
Stratified sampling on data nuggets: a strategy for data reduction	481

Ewa Genge

Is the subjective financial well-being of Polish families changing with time?	
An empirical study based on constrained latent Markov models	482
Sara Geremia, Fabio Morea and Domenico De Stefano Visualization of proximity and role-based embedding in a regional labour flow network	486
Massimiliano Giacalone, Vincenzo Dottorini, Giuseppe Oddo, Vito Santarcangelo and Angelo Romano	
Method for the quality control and operators training in maintenance activities	490
Lorenzo Giammei, Flaminia Musella, Fulvia Mecatti and Paola Vicard Building improved gender equality composite indicators by object-oriented Bayesian networks	494
Sabrina Giordano, Roberta Varriale and Mariangela Zenga A comparative study of financial literacy using data from PISA survey	498
Natalia Golini, Francesca Martella and Antonello Maruotti On model-based clustering for equitable and sustainable well-being at local level: how many Italies?	499
Luca Greco, Antonio Lucadamo and Claudio Agostinelli Model-based clustering for torus data	503
Giulio Grossi and Emilia Rocco AutoSynth index: a synthetic indicator for socio-economic development based on autoencoders	507
Lucia Guastadisegni, Irini Moustaki, Silvia Cagnone and Vassilis Vasdekis A statistical test to assess the non-normality of the latent variable distribution	511
Christian Hennig and Keefe Murphy Quantifying variable importance in cluster analysis	515
Mia Hubert, Iwein Vranckx, Jakob Raymaekers, Bart De Ketelaere and Peter Rousseeuw	
Real-time discriminant analysis in the presence of label and measurement noise	519
Carmela Iorio, Giuseppe Pandolfo and Antonio D'Ambrosio A proposal to evaluate the solution of a fuzzy clustering algorithm	520
Aazm Kheyri, Andriette Bekker and Mohammad Arashi A fused-type elastic net Gaussian graphical model for paired data	524
Amir Khorrami Chokami Complete records over independent FGM sequences	528

Ursula Laa and Dianne Cook	
New tour methods for visualizing high-dimensional data	532
Michele Lambardi di San Miniato, Michela Battauz, Ruggero Bellio and Paolo Vidoni	
Bayesian aggregation of crowd judgments for quantitative fact checking	536
Salvatore Latora and Luigi Augugliaro Supervised classification of curves by functional data analysis: an application to neuromarketing data	540
Gertraud Malsiner-Walli, Bettina Grün and Sylvia Frühwirth-Schnatter Capturing correlated clusters using mixtures of latent class models	544
Laura Marcis, Maria Chiara Pagliarella and Renato Salvatore A three-way "indirect" redundancy analysis	545
Maria Francesca Marino, Matteo Sani and Monia Lupparelli Multi-level stochastic blockmodels for multiplex networks	549
Francesca Martella, Xiaoke Qin, Wangshu Tu and Sanjena Subedi The multivariate cluster-weighted disjoint factor analyzers model	553
Raffaele Mattera, Germana Scepi, Pooria Ebrahimi and Fabio Matano Spatial modelling of pyroclastic cover deposit thickness with remote sensing data and ground measurements: a forecasting combination	
approach	557
Fiammetta Menchetti Granger network on Santa Maria del Fiore Dome	561
Giuseppe Mignemi, Ioanna Manolopoulou and Antonio Calcagnì Group's heterogeneity in rating tasks: a Bayesian semi-parametric approach	565
Dung Ngoc Nguyen and Alberto Roverato Lattice of Gaussian graphical models for paired data with common undirected structure	569
Marco Ortu, Giulia Contu and Luca Frigau Multivariate regression tree topic modeling	573
Lucio Palazzo, Alfonso Iodice D'Enza, Francesco Palumbo and Domenico Vistocco Dendrogram slicing through a permutation test approach reconsidered	577
Roberta Paroli and Luigi Spezia Markov switching autoregressive models for the analysis of hydrological time series	581
Davide Passaro, Luca Tardella, Giovanna Jona Lasinio, Tiziana Fragasso, Valeria Raggi and Zaccaria Ricci A case study of electronic medical records use for predicting kidney injury	585
,	

Matteo Pedone, Raffaele Argiento and Francesco C. Stingo Personalized treatment selection model for survival outcomes	589
Danilo Petti, Marcella Niglio and Marialuisa Restaino	
Variable ranking in bivariate copula survival models	593
Pia Pfeiffer and Peter Filzmoser	
Robust penalized multivariate analysis for high-dimensional data	59 7
Francesco Porro	
Structural zeros in regression models with compositional explanatory variables	600
Kemmawadee Preedalikit, Daniel Fernández, Ivy Liu, Louise McMillan, Marta Nai Ruscone and Roy Costilla	
One-dimensional mixture-based clustering for ordinal responses	604
Iuliia Promskaia, Adrian O'Hagan and Michael Fop	
A compositional stochastic block model for the analysis of the Erasmus	
programme network	608
Claudia Rampichini and Maria Brigida Ferraro	
A proposal of deep fuzzy clustering by means of the simultaneous approach	609
Maria Giovanna Ranalli, Fulvia Pennoni, Francesco Bartolucci and Antonietta Mira	
When nonresponse makes estimates from a census a small area estimation	
problem: the case of the survey on Graduates' Employment Status in Italy	613
Edoardo Redivo and Cinzia Viroli	
A supervised classification strategy based on the novel directional	(17
distribution depth function	617
Ilaria Rocco	
An application of CART algorithm to administrative data: analysis of youth initial employment trajectories	621
Dorota Rozmus	
Resampling for stability estimation vs. cluster validation via data splitting	
and subsampling. Which approach is better in detection of clusters	
in taxonomy?	625
Annalina Sarra, Adelia Evangelista, Tonio Di Battista, and Sergio Palermi	
Functional data analysis approach for identifying redundancy in air quality monitoring stations	627
Luca Scaffidi Domianello	
Student mobility in higher education: a destination-specific local analysis	631
Rosaria Simone	
Residuals diagnostics for model-based trees for ordered rating responses	635

Alexa Sochaniwsky and Paul D. McNicholas	
Hidden Markov models for multivariate longitudinal data	639
Andrzej Sokołowski, Małgorzata Markowska and Maciej Laburda	
K-means clustering - new variations	643
Daniele Spinelli, Salvatore Ingrassia and Giorgio Vittadini A Stata implementation of cluster weighted models: the CWMGLM package	644
Salvatore D. Tomarchio, Antonio Punzo and Antonello Maruotti	
Matrix-variate hidden Markov regressions	648
Cristian Usala, Isabella Sulis and Mariano Porcu	
Inequalities at entrance, labour market conditions and university dropout:	
first evidence from Italy	652
Rosanna Verde, Gianmarco Borrata and Antonio Balzanella	
A clustering method for distributional data based on a LDQ transformation	656
Helga Wagner and Roman Pfeiler	
Shrinkage of time-varying effects in panel data models	657
Carlo Zaccardi, Pasquale Valentini and Luigi Ippoliti	
A Bayesian spatio-temporal regression approach for confounding	
adjustment	661
Gianpaolo Zammarchi	
Linear random forest to predict energy consumption	665

Preface

This book collects the abstracts and short papers presented at CLADAG 2023, the 14th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Economics and Statistics of the University of Salerno, under the auspices of the University of Salerno, the SIS and the International Federation of Classification Societies (IFCS).

CLADAG is a member of the IFCS, a federation of national, regional, and linguisticallybased classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research. Every two years, CLADAG organizes a scientific meeting, devoted to the presentation of theoretical and applied papers on classification and related methods of data analysis in the broad sense. This includes advanced methodological research in multivariate statistics, mathematical and statistical investigations, survey papers on the state of the art, real case studies, papers on numerical and algorithmic aspects, applications in special fields of interest, and the interface between classification and data science. The conference aims at encouraging the interchange of ideas in the above-mentioned fields of research, as well as the dissemination of new findings. CLADAG conferences, initiated in 1997 in Pescara (Italy), were soon considered as an attractive information exchange market and became an important meeting point for people interested in classification and data analysis. A selection of the presented papers is regularly published in (post-conference) proceedings, typically by Springer Verlag.

The Scientific Committee of CLADAG 2023 conceived the Keynote Sessions to provide a fresh perspective on the state of the art of knowledge and research in the field. The scientific program of CLADAG 2023 is particularly rich. All in all, it comprises 5 Keynote Lectures, 31 Invited Sessions promoted by the members of the Scientific Program Committee, and 27 Contributed Sessions. We thank all the session organizers for inviting renowned speakers, coming from many different countries. We are greatly indebted to the referees, for the time spent in a careful review of the abstracts and short papers collected in this book. Special thanks are finally due to the members of the Local Organizing Committee and all the people who collaborated for CLADAG 2023. Last but not least, we thank all the authors and participants, without whom the conference would not have been possible.

Pietro Coretto Giuseppe Giordano Michele La Rocca Maria Lucia Parrella Carla Rampichini

Salerno, September 2023

A THREE-WAY "INDIRECT" REDUNDANCY ANALYSIS Laura Marcis¹, Maria Chiara Pagliarella¹ and Renato Salvatore¹

¹ Department of Economics and Law, University of Cassino and Southern Lazio, (e-mail: laura.marcis@unicas.it, mc.pagliarella@unicas.it, rsalvatore@unicas.it)

ABSTRACT: This work introduces a composite Three-Way application of the High Order Singular Value Decomposition. Two of the three component data matrices are processed by a standard Redundancy Analysis. The remaining "external" data matrix is related to the others in a heterogeneous system of relations, that can be well suited to tensor analysis. The external data are set to be linked with the first matrix, while with the second matrix the relations are explained only through multivariate linear regression. An application introduces the method, based on the official data from the Italian Equitable and Sustainable Well-being indicators.

KEYWORDS: Tucker decomposition, high order singular value decomposition, redundancy analysis.

1 Introduction and background

Tensor decomposition (Kolda & Bader, 2009) has the main objective of reducing complex information detected by higher dimensional arrays of data. From a pure statistical perspective, there are two important exploitations of the tensor analysis: the Candecomp/Parafac decomposition and the Tucker decomposition. They play the role of the extension to tensor objects of the principal component analysis (PCa), recognized as an explorative way to approach multidimensional information (Kroonenberg, 2008). In the literature, the most popular tensor decompositions are "Canonical Decomposition" and the "High Order SVD" (HOSVD, De Lathauwer et al., 2000). The HOSVD decomposes an N-mode tensor, as a multidimensional array, in a core reduced-order tensor, multiplied by component matrices alongside each of the N modes. Three-way PCa was the first extension of the PCa to a three-way data set, giving the first useful employment of tensor analysis to explorative statistical analysis. In standard PCa, the components that come from the SVD that summarize individuals are uniquely related to the components that summarize variables. In a three-way PCa the components that summarize entities in each of the modes are related with the remaining two. Redundancy Analysis (RDA, Legendre

and Legendre, 2012) was originally introduced in order to capture the effect onto a reduced space $\hat{\mathbf{Y}}_X = \mathbf{X}\hat{\mathbf{B}}$ of the linear dependence by a set of criterion variables **Y** from a set of predictors **X**, where **B** is the matrix of the ordinary least squares multivariate regression estimates. RDA provides a constrained analysis of the whole linear relations between the two sets of variables, and an unconstrained analysis given by the set of multivariate regression residuals. It can be considered as an extension of multivariate regression because models the effects of the explanatory variables on a response matrix. Partial RDA (pRDA) explores the effects of the predictors in **X** on the **Y** variables, given the covariates of some additional exploratory variables in a matrix Z. It is a standard RDA performed taking into account the X variables as predictors on $\mathbf{Y} - \widehat{\mathbf{Y}}_Z$, with the "effect" by Z removed. Nevertheless, the relations between the variables Y and Z may be quite several. While remaining the same the role of the predictors X on Y, a third set of variables Z may be related and depend on Y, by an existing but not well defined dependence. Thus, applying multivariate regression may result hardly appropriate. Variables in Z in some cases can not be modeled on Y as predictors in a multivariate regression, while X predict Y and, indirectly through Y, the variables in Z. Residuals $Y - \hat{Y}_X$ may take in account the role of X in the "indirect" explanation of Z. This is somewhat different from pRDA, because Y is not regressed on Z, as the external set of covariates from which we remove the effect on Y, and also Z is not related with **Y** through linear regression. Given a 3rd-order tensor $X \in \mathbb{R}^{I \times J \times K}$, the Tucker decomposition through the HOSVD decomposes the tensor X into a core tensor G and factor matrices along each mode, as follows:

$$\mathcal{X} \approx \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$$

with the correspondent elementwise expression $x_{ijk} = \sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} g_{rst} a_{ir} b_{js} c_{kt}$, with i = 1, ..., I, j = 1, ..., J, k = 1, ..., K. The factor matrices are columnwise orthonormal, $\mathbf{A} = [\mathbf{a}_1, ..., \mathbf{a}_R], \mathbf{B} = [\mathbf{b}_1, ..., \mathbf{b}_S], \mathbf{C} = [\mathbf{c}_1, ..., \mathbf{c}_T]$, with r = 1, ..., R, s =1, ..., S, t = 1, ..., T. The matricized forms, one per mode, of the 3-way tensor \mathcal{X} are:

 $\begin{array}{lll} \mathbf{X}_{(1)} &\approx & \mathbf{A}(\mathbf{C}\odot\mathbf{B})' = \mathbf{A}\mathbf{G}_{(1)}(\mathbf{C}\otimes\mathbf{B})', \\ \mathbf{X}_{(2)} &\approx & \mathbf{B}(\mathbf{C}\odot\mathbf{A})' = \mathbf{B}\mathbf{G}_{(2)}(\mathbf{C}\otimes\mathbf{A})', \\ \mathbf{X}_{(3)} &\approx & \mathbf{C}(\mathbf{B}\odot\mathbf{A})' = \mathbf{C}\mathbf{G}_{(3)}(\mathbf{B}\otimes\mathbf{A})', \end{array}$

with the symbols \odot and \otimes that are the Khatri-Rao and Kronecker products, respectively. If $r_R(X)$ is the rank of the tensor X alongside one of the modes,

 Table 1. Description of the variables used for the application

Variables	Description				
S8	Age-standardised mortality rate for dementia and nervous system diseases				
IF3	People having completed tertiary education (30-34 years old)				
L12	Share of employed persons who feel satisfied with their work				
REL4	Social participation				
POL5	Trust in other institutions like the police and the fire brigade				
SIC1	Homicide rate				
BS3	Positive judgement for future perspectives				
PATR9	Presence of Historic Parks/Gardens and other Urban Parks recognised of significant public interest				
AMB9	Satisfaction for the environment - air, water, noise				
INN1	Percentage of R&D expenditure on GDP				
Q2	Children who benefited of early childhood services				
BE1	Per capita adjusted disposable income				
LBE1	Logarithm of Per capita adjusted disposable income				

the HOSVD may uses Alternating Least Squares, in order to find:

$$\min_{\mathcal{G},\mathbf{A},\mathbf{B},\mathbf{C}} \left\| \boldsymbol{X} - \boldsymbol{\mathcal{G}} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C} \right\|.$$

Making the substitutions $\mathbf{A} = \mathbf{Y}$, $\mathbf{B} = \mathbf{Y} - \hat{\mathbf{Y}}_X$, $\mathbf{C} = \mathbf{Z}$, with I = J = K = n, $R = S = r(\mathbf{Y}) = r(\mathbf{Y} - \hat{\mathbf{Y}}_X)$, and $T = r(\mathbf{Z})$, we achieve the desired result, by finding a Three-Way version of the "indirect" RDA, with the proper data matrices. Like in the standard RDA, the data in \mathbf{Y} , \mathbf{X} , and \mathbf{Z} have to be preprocessed by centering and standardazing their column vectors. This is requested before the application of the RDA of \mathbf{Y} on \mathbf{X} .

2 Application study

The Equitable and Sustainable Well-being indicators (BES) are designed to define the economic policies which largely act on some fundamental aspects of the quality of life. Table 2 reports the description of these indicators. We use the latter as the predictor variable in the RDA that gives the constrained analysis in the subspace of $\hat{\mathbf{Y}}_X$. Table 2 reports the correlation matrix between the column vectors of \mathbf{Y} , \mathbf{Y}^* , and \mathbf{Z} . Correlations in bold are significant. It is interesting to remark that in some cases the variables in \mathbf{Z} are correlated with the columns of \mathbf{Y} , while they are generally poorly related with the RDA residuals vectors (given by the unconstrained RDA). In particular, the evidence is that even if \mathbf{Z} may be regressed on \mathbf{Y} , for some variables the regression on \mathbf{X} results inappropriate. One of the important cases is shown by the variable AMB9. This variable (Satisfaction for the environment - air, water, noise) is permanently correlated with the variable BS3 (Positive judgement for future

Variable	$Y1_{BS3}$	Y2 _{INN1}	$Y3_{IF3}$	$Y4_{Q2}$	$Y5_{L12}$	Y658
$Z1_{AMB9}$	0,4029	-0,0239	0,4570	0,6852	0,8090	0,6926
$Z2_{POL5}$	0,1906	0,3629	0,2594	0,6395	0,6330	0,5973
Z3 _{PATR9}	0,1800	0,3759	0,0426	0,0353	0,0146	0,2420
$Z4_{REL4}$	0,5133	0,2601	0,4413	0,7026	0,8380	0,6507
$Z5_{SIC1}$	-0,2215	-0,1150	-0,4665	-0,5397	-0,5925	-0,6343
Variable	$Y1_{BS3}^{\star}$	$Y2_{INN1}^{\star}$	$Y3_{IF3}^{\star}$	$Y4_{Q2}^{\star}$	$Y5_{L12}^{\star}$	$Y6_{S8}^{\star}$
$Z1_{AMB9}$	0,4605	-0,1075	0,2848	0,1294	0,0423	-0,0119
$Z2_{POL5}$	0,0042	-0,1972	-0,0523	0,0662	-0,0624	-0,0755
$Z3_{PATR9}$	-0,1311	0,2081	-0,2749	0,2794	0,0053	0,1774
$Z4_{REL4}$	0,3595	-0,0025	-0,0056	0,0993	-0,1227	-0,1229
$Z5_{SIC1}$	-0,2029	-0,0184	-0,3021	-0,1787	-0,0291	-0,0234

Table 2. Correlations - Matrices \mathbf{Y} , \mathbf{Y}^{\star} , and \mathbf{Z}

perspectives), whatever is **y** or $\mathbf{y}^* = \mathbf{y} - \hat{\mathbf{y}}_X$ (with $corr(y, y^*) = 0.7293$). We have a moderate correlation between the variable BS3 and the correspondent RDA residuals, and a moderate explanation of this variable is given by the BE1 (Per capita adjusted disposable income). Then, a tentative conclusion is that the "Satisfaction for the environment" (a **Z** variable) does not depend on the "Disposable income" (the RDA predictor **X**). An opposite case occurs when we try to assess the same AMB9 variable, versus L12 (Share of employed persons who feel satisfied with their work). Even we have that $corr(y, y^*) = -0.2395$, AMB9 has the greatest correlation with the observed L12 (y), which reduces to be not significant in terms of L12 RDA residuals (y^*). Thus, even the "Share of employed persons who feel satisfied with "Satisfaction for the environment" can be explained by the relation with "People that feel satisfied with their work", the "Satisfaction for the environment" depends on the "Disposable income" through its relation with the "People that feel satisfied with their work".

References

- DE LATHAUWER, LIEVEN, DE MOOR, BART, & VANDEWALLE, JOOS. 2000. A multilinear singular value decomposition. *SIAM journal on Matrix Analysis and Applications*, **21**(4), 1253–1278.
- KOLDA, TAMARA G, & BADER, BRETT W. 2009. Tensor decompositions and applications. *SIAM review*, **51**(3), 455–500.
- KROONENBERG, PIETER M. 2008. Applied multiway data analysis. John Wiley & Sons.
- LEGENDRE, PIERRE, & LEGENDRE, LOUIS. 2012. Numerical ecology. Elsevier.