
Noname manuscript No.
(will be inserted by the editor)

Objects Relocation in Clutter with Robot

Manipulators via Tree-based Q-Learning Algorithm:

Analysis and Experiments

Giacomo Golluccio, Paolo Di Lillo,
Daniele Di Vito, Alessandro Marino,
Gianluca Antonelli

the date of receipt and acceptance should be inserted later

Abstract This work addresses the problem of retrieving a target object from
cluttered environment using a robot manipulator. In the details, the proposed
solution relies on a Task and Motion Planning approach based on a two-level
architecture: the high-level is a Task Planner aimed at finding the optimal ob-
jects sequence to relocate, according to a metric based on the objects weight;
the low-level is a Motion Planner in charge of planning the end-effector path for
reaching the specific objects taking into account the robot physical constraints.
The high-level task planner is a Reinforcement Learning agent, trained using
the information coming from the low-level Motion Planner. In this work we
consider the Q-Tree algorithm, which is based on a dynamic tree structure in-
spired by the Q-learning technique. Three different RL-policies with two kinds
of tree exploration techniques (Breadth and Depth) are compared in simulation
scenarios with different complexity. Moreover, the proposed learning methods
are experimentally validated in a real scenario by adopting a KINOVA Jaco2

7-DoFs robot manipulator.

Keywords Motion Planning · Task Planning · Reinforcement Learning

1 Introduction

Robotic systems are deployed in industrial environment since decades for per-
forming programmed routines in highly-structured environments, but recent
changes in production processes require more flexible robots, capable of adapt-
ing to dynamic and unstructured environments. In particular, robotic manip-
ulation of objects in clutter is a problem of growing interest, due the high
number of application contexts, e.g. in manufacturing industry driven by In-
dustry 4.0 requirements, warehousing logistics and in domestic environments

Authors are with the Department of Electrical and Information Engineering (DIEI),
University of Cassino and Southern Lazio, {giacomo.golluccio, pa.dilillo, d.divito,

al.marino, antonelli}@unicas.it

2 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

for the growing diffusion of service robots. Given the high dexterity and rea-
soning needed for accomplishing this task, it is currently performed mainly
by human workers [1]. For this reason, many researchers have focused their
efforts in the last years in designing methods and algorithms to be employed
by robots for objects relocation.

The main aspects that make this research topic remarkably challenging are
the unstructured nature of these environments combined to the NP-hard com-
plexity of the problem [2, 3]. In detail, retrieving a target from clutter might be
intractable from a computational standpoint [4, 5], due to the combinatorial
nature of the problem of rearranging the position of several obstacles to free
up a path toward a target object [6, 7, 8].

In literature, the problem has been mainly addressed by relying on geomet-
ric methods that potentially make use of specific heuristics to reach effective
solutions while reducing the computation complexity. In [4], the Authors pro-
pose a geometric method with the aim of minimizing the number of obstacles
to be relocated, and consequently the time (or the energy) spent to the scope.
Their algorithm is shown to be complete and efficient, outperforming other
methods in terms of execution time, but the optimality of the solution is not
guaranteed. Similarly, the planner in [9] solves the rearrangement problem ex-
ploiting dynamic nonprehensile actions guaranteeing only the feasibility of the
plan.

In [10] a probabilistic solution, scalable with respect to the number of ob-
jects, is analyzed. In the proposed method the Authors choose the constraints
to take into consideration depending on the motion feasibility. In case of an un-
feasible motion, it is necessary to remove some of the constraints or to increase
the motion planning timeouts in order to make the algorithm complete.

In [11], the Authors provide a geometric method for multiple objects reor-
ganization in clutter, minimizing the number of objects to move. Differently
from the above-mentioned works, here the optimal solution is obtained by
splitting a continuous 2D plane into discrete cells, which are then used in a
hybrid planner to generate the motion plan. However, the elementary motions
that compose the plan are determined not considering the reachability of the
objects and the robot kinematic constraints. For this reason, the plan might
not be feasible for real robots. Alternatively, in [12] the Authors consider a
novel approach based on Task Motion Planning (TMP) for unknown object
rearrangements, relying on graphs that are built online in order to retrieve the
target object. Their approach does not make use of heuristics in the explo-
ration, potentially resulting in a large graph and not computationally efficient
solution.

Recently the TMP problem, including object manipulation and grasping in
a cluttered environment, have made use of machine and deep learning [13, 14]
techniques. For instance, in [15] a neural approach is proposed, with a partic-
ular focus on considering unknown objects. In detail, they describe the Neural
Rearrangement Planning, an approach to rearrange unknown objects from per-
ceptual data in the real world. It is capable of rearranging previously unseen
objects, exploiting segmented point-clouds coming from a RGB-D sensors.

Objects Relocation in Clutter via Tree-based Q-Learning 3

Among the machine-learning techniques, Reinforcement Learning (RL) has
been considered by many researchers as a base for solutions of this kind of
problems [16]. It is a technique based on a figure named agent, which interacts
with a space named environment choosing a possible action, which provides
a feedback named reward. In particular, the agent objective is to collect the
maximum reward values over time. The aim of this learning technique is to
provide robots abilities like learning, improving over time, adapting and repro-
ducing tasks [17]. The approach proposed in [13] combines the action planning
with a goal-independent reinforcement learning approach considering a sparse
reward. The problem is to find high-level actions to send to a low-level layer
as trajectories for robots to solve random puzzles. The obtained results prove
that the proposed approach is able to solve the task if the considered solu-
tion space is not too large. In [18], the Authors propose a data-driven method
to be employed in case of an occluded target. They assign a probability dis-
tribution to the target object pose considering partial observations and an
occlusion-aware heuristic, and then they exploit a receding horizon approach.
They present an architecture that allows learning a generative model used to
update the target pose probability distribution in a continuous action space.

There is a large amount of approaches that exploit a visual input, e.g. RGB
or RGB-D images, mapping it into feasible actions to bring the agent towards
the goal [19, 20]; to the scope, they make use of Convolutional Neural Networks
(CNNs) combined with a policy-based Reinforcement Learning [21, 22, 23].

In our previous works [24, 25], we proposed a method to solve pick-and-
place problems in clutter, exploiting a combination between Task and Motion
Planning using an algorithm named Q-tree which is based on Q-learning [26].
In particular, this approach relies on a dynamic tree structure instead of the
well-known Q-matrix, providing advantages like limitation of computational
burden and easy implementation. The considered tree is built on a Control-
Aware Motion Planner that relies on the feedback from a Task-Priority In-
verse Kinematics Framework [27] that takes into account several kinematic
constraints of the robotic manipulator, e.g. joint limits and obstacle avoid-
ance.

In this paper we extend the formulation by adding the following contribu-
tions:

– the objects in the considered scenarios have different characteristics and the
Reinforcement Learning (RL) agent learns the optimal sequence of objects
to relocate;

– we perform an analysis on the learning parameters variation;
– Observation about the optimal choice of ε parameters related to the meth-

ods H-εGb and H-εGd .

Additionally, we present experimental results on a KINOVA Jaco2 7-DoFs
manipulator to show the effectiveness of the proposed approach in a realistic
scenario.

The rest of the paper is organized as follows: Sect. 2 gives the necessary
mathematical background on Reinforcement Learning and rooted trees; in

4 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

Sect. 3 we present the formulation of the problem that we address; Sect. 4
describes the proposed solution; Sect. 5 focuses on the obtained simulative
and experimental results, while in Sect. 6 we report conclusions and future
work.

2 Mathematical background

2.1 Reinforcement Learning

Reinforcement Learning is the design of an agent which acts into an environ-
ment with the aim of maximizing cumulative reward signals.

In detail, at each timestep k, for a particular state sk the agent selects an
action ak, receiving a scalar reward rk. The idea is to maximize the expected
reward over time. In particular, the decision-making problem is modelled as a
Markov Decision Process (MDP), in which:

– S denotes the state space;
– A denotes the action space;
– p = Pr(sk+1 = s′|sk = s, ak = a) is the transition probability;
– r is the reward function;
– γ ∈ [0, 1] is the discount factor.

The agent estimates the goodness of a state in order to decide which action
to perform at a particular time-step. To the scope, a possible method is to
consider the action-value function, also known as the Q-function, defined as
the expected sum of rewards after performing action ak in the state sk following
a policy π:

Qπ(s, a) = Eπ(

∞
∑

l=0

γlrk+l+1|sk = s, ak = a) . (1)

The optimal action-value function is given by:

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A , (2)

which, combined with Eq. (1), leads to the Bellman optimality equation:

Q∗(s, a) =
∑

s′

p(s′|s, a)[rk+1 + γmax
a′

Q∗(s
′, a′)] , (3)

where sk = s, sk+1 = s′, ak = a, ak+1 = a′.
Equation (3) assumes the knowledge of the state transition probability

p(s′|s, a), i.e., it is a model-based problem.
The same equation can be applied in a model-free problem ignoring the state
transition probability. This is achieved by setting p(s′|s, a) = 1 and, therefore,
obtaining:

Q∗(s, a) = rk+1 + γmax
a′

Q∗(s
′, a′) . (4)

Objects Relocation in Clutter via Tree-based Q-Learning 5

Equation (4) is a recursive nonlinear function without a closed-form solu-
tion. The following iterative update law can be adopted:

Qk+1(sk, ak) = Qk(sk, ak)− αδk , (5)

where α ∈ [0, 1] is known as learning rate and δk is the temporal difference
error, defined as:

δk = Qk(sk, ak)− rk+1 − γmax
a∈A

Qk(sk+1, a) . (6)

Finally, by combining Eq. (6) and Eq. (5), one obtains:

Qk+1(sk, ak) =Qk(sk, ak) + α(rk+1 + γmax
a∈A

Qk(sk+1, a)−Qk(sk, ak)) , (7)

which is an iterative approach named Q-learning [26].

2.2 Rooted trees

A directed graph is an ordered pair G = {V,X}, where V = {ν1, . . . , νl} is the
set of nodes, or vertices, and X = {χ1, . . . , χm} is the set of oriented pairwise
edges from node νi to νj . A scalar value might be assigned to edges; in this case
the edge value is assumed to be 1 unless specified otherwise. A path between
two nodes νi and νj is the set of directed edges through which a node νj can
be reached from node νi. A graph G is defined cyclic if it contains a cycle, i.e.,
there is a subset of the edge set that forms a path such that the first node of
the path corresponds to the last. On the opposite, if no cycle exists a graph is
defined acyclic.

A tree T is an undirected acyclic graph such that there is a unique path
between every pairs of vertices; this implies that in a tree of l nodes, m = l − 1
edges exist. A directed tree is a Directed Acyclic Graph (DAG) whose under-
lying undirected graph is a tree. In particular, in a directed rooted tree, given
a node νi, there is exactly one edge from another node νj , called parent, to
νi that is, then, a child of νj ; then, every node has a unique parent except the
root which has no parent and from which exactly one path exists to any other
node of the tree; furthermore, a node with no child is a terminal node.

Moreover, the depth or level of a node νi is its distance from the root, i.e.,
the length of the unique path from the root to νi computed by summing the
weights associated to the path. Thus, the root has depth 0.

3 Problem formulation

The aim of this work is to design a learning agent for solving the task of re-
trieving a target object T in clutter and moving it from an initial position
pt,0 ∈ IR3 to a final position pt,f ∈ IR3, relying on a Reinforcement Learn-
ing approach. Given the presence of No obstacles O = {O1, . . . , ONo} in the
scene with assigned position po,i ∈ IR3 (i = 1, 2, · · · , No), the Reinforcement

6 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

Learning agent should relocate the obstacles that make T unreachable, in or-
der to free up a path to reach it. An object is considered unreachable if it is
not possible to find a trajectory that allows the robot to grasp and relocate
it without hitting any obstacle. In the initial state sH , the robot starts in a
predefined joints configuration, all the obstacles Oi are in initial positions po,i

and the target T is in the initial position pt,0.

The sequence Su represents any sequence of objects with cardinality |Su| =
u, and ST

u is the sequence obtained from Su adding as last element the target
T , i.e. ST

u = {Su, T}. An object Oi ∈ Su is considered relocatable if all the
previous objects in the sequence Su can be relocated. If all the objects into
the sequence Su are relocatable, the sequence is defined feasible.

Given that, in general, it is possible to find multiple feasible sequences, an
optimization procedure can be designed in order to minimize a metric related
to the energy spent during the relocation procedure. In this work, without loss
of generality we consider that each obstacle has a weight φi in the range (0, 1]
Kg, that is the standard object weight normalized with respect to the KINOVA
Jaco2 7-DoFs maximum payload. It is worth noticing that the weight can be
associated to any other physical characteristics of the objects, e.g. fragility or
volume. In this perspective, the aim of the optimization problem is to find a
feasible sequence ST

u that minimizes the cost function:

ΦSu
=

∑

i∈Su

φi. (8)

Finally, we consider the following assumptions:

– the positions of the obstacles and the target are known beforehand;
– the relocation of an obstacle does not affect the positions of the other ones;
– it is not possible to grasp the obstacles and the target from the top, due

to the presence, for example, of a shelf over the objects.

4 Proposed solution

In this section we describe our proposed solution to the above-mentioned prob-
lem. We have designed a two-layered architecture, as shown in Fig. 1 . In detail,
the high-level is represented by the RL-Task Planner block, which is in charge
of learning the optimal sequence of actions, i.e. obstacles to relocate, in order
to free up a path toward the target; the low-level layer is the Motion Planner

block, which provides a feedback about the feasibility, gk, of a specific action,
ak, aimed at relocating an object in terms of fulfillment of robot kinematic
constraints.

An action ak represents a given object to relocate, which is considered
unfeasible if the Motion Planner cannot find in a predefined amount of time
an obstacle-free path that connects the end-effector initial configuration and
the object. In case of a feasible action, the Motion Planner outputs the joint

Objects Relocation in Clutter via Tree-based Q-Learning 7

velocities q̇(t) that make the robot actually perform the object relocation, ob-
taining a new state sk. In both cases, a reward rk, depending on the feasibility
gk of the action ak is generated.

ak

ak q̇(t)

rk, sk

gk

HIGH-LEVEL LOW-LEVEL

ENVIRONMENT

RL-TASK MOTION

PLANNERPLANNER
ROBOT

Fig. 1: Representation of the proposed architecture: the RL-Task Planner chooses the
action ak with an appropriate policy, while the Motion Planner provides information about
the feasibility gk of the chosen action ak in terms of fulfillment of kinematic constraints. In
case of a feasible action, the joint velocities vector q̇(t) is sent to the Robot that actually
performs it, relocating the object. The environment elaborates the information related to
the feasibility gk of the action and generates a reward signal rk and the new state sk, which
are used to update the RL agent.

In the following subsections we will give algorithmic details about the two
layers. It is worth noticing that the word task is used in the both the layers
with different meanings. Within the low-level layer it represents the generic el-
ementary control objectives used in the inverse kinematics framework, whereas
for the high-level one, it represents a discrete planning for the RL agent.

4.1 Low-level: Motion Planner

As previously mentioned, the low-level Motion Planner provides information
about the feasibility of the actions ak requested by the high-level RL-Task
Planner and computes the joints velocity vector q̇(t) that allow the robot to
reach and relocate the selected object. More in detail, it is composed by three
processes (see Fig. 2): the actions-objects mapping, the sampling-based algo-
rithm and the Set-based Task-Priority Inverse Kinematics (STPIK)-check [27].

First of all, the action ak is translated in a desired end-effector pose ηee,d,
in which the desired position is set as the constant position of the object
to relocate and the desired orientation is chosen in order to be suitable for
the grasping phase. This information feeds the sampling algorithm, which is
in charge of finding an obstacle-free, time-varying trajectory ηee,d(t) between
the end-effector initial position ηee,0 and ηee,d. The considered sampling al-
gorithm is the Rapidly-exploring Random Tree (RRT) Connect [28] which is
a bidirectional method based on growing two graphs rooted in ηee,0 and ηee,d,
respectively. Therefore, the algorithm is able to find a global path connecting
the start and final points more efficiently than single tree search approaches.

8 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

ak Actions-Objects
Mapping

ηee,d Sampling

Algorithm

ηee(t) STPIK
check

FAIL

gk

q̇(t)

MOTION PLANNER

Fig. 2: Motion planner architecture, designed as three blocks: the Action-Objects Map-
ping translates the actions in constant desired end-effector poses; the Sampling Algorithm
computes obstacle-free trajectories for the end-effector; the STPIK (Set-based Task-Priority
Inverse Kinematics) checks the feasibility of the trajectories in terms of joint-level kinematic
constraints (joint limits and self-hits).

In this step the sampling is performed in cartesian-space, and the constraints
taken into account are defined only in cartesian-space as well, i.e. the output
of the sampling-based algorithm is an obstacle-free path, obtained without
considering all the joint-space safety tasks (e.g., joint limits and self-hits).
They are handled by the STPIK-check block, which simulates the candidate
trajectory ηee,d(t) and checks their fulfillment.

Considering a robot manipulator with n degrees of freedom and being
q = [q1 . . . qn]

T its joint position vector, the STPIK algorithm allows to per-
form several tasks simultaneously. In detail, for a generic task σ ∈ IRv, where
v ∈ N

+ is the task dimension, the Closed Loop Inverse Kinematics (CLIK) [29]
algorithm can be applied in order to compute the needed joint velocities for
achieving a specific desired value σd(t):

q̇ = J†(σ̇d +Kσ̃) , (9)

where J† is the Moore-Penrose pseudoinverse of the task Jacobian matrix
J(q) ∈ IR6×n, σ̇d ∈ IRv is the time derivative of σd, K ∈ IRv×v is a positive-
definite gain matrix and σ̃ = σd(t)− σ(t) is the task error.

For a redundant robot the number of joints n is greater than the task di-
mension v, and such redundancy can be exploited to perform multiple tasks
simultaneously. In particular, the elementary tasks can be arranged in a hierar-
chyH and the solution can be computed by projecting the velocity components
of the lower priority tasks onto the null space of the higher priority ones, in
order to filter out the components that will affect them. In this way, the accom-
plishment of the primary task is always guaranteed, while the lower-priority
ones are executed at best. Therefore, considering a hierarchy composed by K
tasks, the joint velocities q̇ can be computed recursively as [30]:

q̇K =

K
∑

i=1

(J iN
A
i−1)

†(σ̇i,d +Kiσ̃i − J iq̇i−1) , (10)

where NA
i is the null space of the augmented Jacobian matrix JA

i , obtained
by stacking the task Jacobian matrices from task 1 to i. This task priority-
framework has been extended to handle also tasks in which the control objec-
tive is to keep the task value σ within a certain set, i.e. above a lower threshold

Objects Relocation in Clutter via Tree-based Q-Learning 9

and below an upper one. This is the case of tasks such as joint limits, where
the control objective is to keep the joints position within their physical limits,
or obstacle avoidance, where the control objective is to keep the end-effector
of the manipulator at a minimum distance from potential obstacles. This kind
of tasks has been defined as set-based, and their handling within classical task-
priority framework is managed through a proper insertion/removal of tasks
in the hierarchy. For more details about the specific employed algorithm, the
reader is referred to [31] and [32].
In case of a constraint violation, a fail signal is sent to the sampling algorithm
block that generates a new ηee,d(t), starting a new iteration. The process
terminates when the sampling algorithm finds a path that overcomes the IK-
check, or when it cannot find any feasible path after a predefined amount of
time.

After the execution of the algorithm, the label gk is set according to the
result of the planning. In particular:

gk =

gU if ak is unfeasible

gO if ak is feasible and it is related to the relocation of obstacle Oi

gT if ak is feasible and it is related to the relocation of the target T

(11)

4.2 High level: RL-Task Planner

The high-level RL-Task Planner is in charge of learning the optimal sequence
of obstacles Oi to relocate in order to reach the target T . Defining as S the
manifold of all the possible sequences composed by j ≤ No obstacles and the
target T , its cardinality is:

ξt =

No
∑

j=1

j!

(

No

j

)

, (12)

Let us define as ak ∈ Ak = {a1, · · · , aNo
, aT } the action chosen at a specific

timestep k. Within the set Ak, the terms ai (i = 1, · · · , No) are related to the
relocation of the objects Oi, whereas aT represents the action to relocate the
target T .

When the RL-Task Planner selects the action ak in a given state sk, it
receives a reward rk that depends on its feasibility gk:

rk(sk, ak) =

−φi, if gk = gO

−10, if gk = gU

100, if gk = gT

, (13)

where φi is the weight of the object related to the action ak.
The RL-Task Planner has to choose the action ak that maximizes the

reward rk for a given state sk.

10 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

In our previous work [24, 25], we presented the Q-Tree, a technique that
replaces the well-known static Q-Matrix of the Q-learning algorithm with a
dynamic rooted tree structure that is built over Emax episodes of the algorithm.
The advantage of this approach regards the computational burden. Indeed,
for how we represent the state sk (e.g. sequences of relocated objects until
timestep k), considering the classical Q-Learning, all the possible combination
must be allocated a-priori. Due the combinatorial nature of the problem, it
is very hard, while considering the Q-Tree, the pre-allocation is not necessary
because the structure is built dynamically.

Each node of the tree represents a state sk, with an associated sequence
Ssk = {Oi1 , Oi2 , · · · , OiU }, that contains information about the objects Oix

relocated until timestep k. In this work, the value associated to edge χk

between sk and sk+1 is set as the Q-value Qχk
, and updated at each time-step

as in Eq. (7). At the beginning of the first episode, the tree is initialized with
a root node sH , that represents the initial state in which the robot is in a
predefined joints configuration and all the objects are in their initial positions.
Within each episode Eh(h = 1, . . . , Emax), the tree gets updated at each time-
step k after the choice of an action ak as follows:

1. if Oix /∈ Ssk , meaning that the action ak related to the object Oi has
not been chosen in any previous episode, a new node sk+1 with associated
sequence Ssk+1

= {Ssk , ak} is allocated, updating the edge value between
sk and sk+1;

2. ifOix ∈ Ssk , meaning that the action ak related to the objectOi has already
been chosen in a previous episode, the edge that connects the nodes sk and
sk+1 is updated without allocating a new node.

The episode terminates when the robot reaches the target T , or when a max-
imum number of iteration Imax is reached.

Then, at the beginning of each one of the following episodes, the algo-
rithm starts again from the node sH keeping the tree structure built until
that episode. It is worth noticing that given a specific sk, ak is selected from
a set that does not contain actions already considered unfeasible in previous
episodes in order to speed up the process. This is valid for all the proposed
exploration policies.

An example of the Q-Tree algorithm is reported in Fig. 3.

4.2.1 Exploration policies

In this Section we describe the Q-Tree exploration policies that will be com-
pared in Sec. 5. Given a node sk with an associated Ssk , the RL-Task Planner
chooses ak with the following possible policies:

– Learning Random Exploration-(LRND): it chooses ak ∈ Ak in a com-
pletely random manner.

– Random Exploration with Heuristics-(H-LRND): it at first tries to
reach the target (choosing akT

). If it is unfeasible, ak is chosen randomly
among the other actions in Ak.

Objects Relocation in Clutter via Tree-based Q-Learning 11

Q-Tree

sH

s1,1

sN0,1

sN0+1,T

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

s1,N0+1

· · ·

· · ·

sN0,m

sN0+1,T

QH,1 QH,No+1

QNo,fQNo,1

· · ·

· · ·· · ·

· · ·· · ·

Fig. 3: Example of complete Q-Tree: The node root sH represents the initial configuration

where all objects are in the initial location. The last nodes contain the target T .

– ε-Greedy Exploration with Heuristics-(H-εG): it chooses ak exploit-
ing the ε-Greedy technique. In detail, it chooses a random action ak with
probability ε and the action associated with the maximum edge value with
probability 1− ε (this corresponds to the maxa′ Q∗(s

′, a′) in Eq. (3)).

Regarding the ε-Greedy Exploration with Heuristics policy, in order to ease
the exploitation, ε is updated at the beginning of each episode Eh as:

ε(h) = ε0

(

εmin

ε0

)

h−1

Emax−1

, (14)

where ε0 and εmin are the initial and the minimum ε value respectively.

4.2.2 Search methods

For each one of Q-Tree exploration policies, we compare two different search
methods in order to investigate their effect on the learning dynamics:

– Breadth: the RL-Task Planner explores an entire tree level before moving
on the following levels;

– Depth: the RL-Task Planner prefers moving towards nodes at following
levels rather than the ones at the same level.

In other words, the employed search method affects the behavior of the
RL-Task Planner in case of an unfeasible action is chosen. Considering the
breadth method the current episode is terminated, whereas considering the
depth method it continues choosing another action among the possible ones.

12 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

4.2.3 Q-Tree learning algorithm

In this subsection we give details about the learning algorithm employing the
Q-Tree structure. The inputs of the algorithm are:

1. number of obstacles;
2. robot end-effector pose;
3. search method;
4. exploration policy.

At the beginning of the first episode, the Q-Tree is initialized allocating the
root node sH . At each timestep k, the RL-Task Planner chooses an action
ak following the selected policy and search method and it queries the low-
level Motion Planner, which tries to plan a trajectory for reaching the object
associated to ak. It returns the information about the action feasibility gk that
is then used to compute the reward rk according to Eq. (13). At this point
the tree is updated adding a new node and updating the corresponding edge
value. The procedure gets iterated until one of the termination conditions of
the episode is met.

The training phase terminates when the maximum number of episodes
Emax is reached, or when the Q-Tree is not significantly updated anymore
over consecutive episodes, both in terms of new nodes allocation and edge
values. In detail, defining as:

Qh =

l−1
∑

j=1

|Qχj
| , (15)

the sum of all the edge values at the end of the episode h, the termination
condition is:

|Qh −Qh−1| ≤ β , (16)

where β > 0 is a predefined threshold.

4.2.4 Optimality and complexity analysis

Upon completion of the training phase, the tree is completely built and it is
possible to find a number of sequences of obstacles to relocate in order to reach
the target. The optimal sequence is the one corresponding to the nodes related
to the highest edge values, i.e. the maximum of the Q-function.

The computational complexity is strictly related to the number of queries to
the Motion Planner. It is worth noticing that during the training, the motion
planner is queried only if a new node must be added, due to the fact that
each computed trajectory is stored and exploited in future episodes. Upon
termination of training, the number of motion planner queries is equal to the
tree edges number.

Objects Relocation in Clutter via Tree-based Q-Learning 13

Algorithm 1: Q-Tree
Data:

ObstaclesNumber
RobotPose // End-Effector position

SearchMethods // Breadth, Depth

ExplorationPolicy // LRND,H-LRND,H-εG
Result: ActionsSequence
// Allocation of the Tree root node

CreateRootNode();

Q0 = 0 // Starting training for the RL-Task Planner

while h← 1 < Emax and |Qh −Qh−1| > β do

// Reset scene to initial condition

CurrentState = sH ;
for j ← 1 to Imax do

// Selection next action

NextAction = TaskPlanner(Policy);
// Feedback Motion Planner

MotionPlanner(CurrentState,NextAction);
r = getReward();
// Update

if IsInTree(CurrentState) == false then

AddNode(CurrentState);
end

UpdateTreeEdgesValue();

end

end

ActionsSequence = SelectSequenceWithMaximumEdgeValues();

5 Simulation and experiments

The solution described in Sect. 4 is here validated via an extensive simulation
campaign and experiments. In detail, in Sect. 5.1 the exploration strategies
presented in Sect. 4.2 are compared on scenarios with growing complexity,
while experimental results in a realistic case study are presented in Sect. 5.2.

5.1 Simulation results

All the simulation are performed using the visualizer RViz. Three different
scenarios are simulated, differentiated in terms of objects number No to relo-
cate:

– Scenario 1 (easy): No = 5 obstacles are considered, ξp = 10 feasible
sequences from the root node sH to the target nodes sT in Fig. 3, where 9
are sub-optimal and 1 is optimal;

– Scenario 2 (medium): No = 10 obstacles are considered with ξp = 20
possible sequences from the initial state sH to the target nodes sT , where
19 are sub-optimal and 1 is optimal;

14 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

– Scenario 3 (hard): No = 15 obstacles are considered with ξp = 20 pos-
sible sequences from the initial state sH to the target nodes sT , where 19
are sub-optimal and 1 is optimal.

In order to assess the performance of the proposed relocation strategy, a
parametric analysis has been conducted considering the following parameters:

– learning rate α, variable in the interval [0.3− 1];
– discount factor γ, variable in the interval [0.1− 0.9].

In addition, ε0 and εmin in Eq.(14) are set to 1 and 10−3, respectively.
Three performance indices are considered: (i) the number of episodes Ess ef-

fectively required to train the agent bringing at steady state condition the tree;
(ii) the number of queries MPq to the motion planner described in Sect. 4.1;
(iii) the number of episodes E1st required to find the first optimal solution.

The maximum number of episodes Emax for each training in Algorithm 1
is set to Emax = 10000 for the LRND and H-LRND techniques (both breadth
and depth search methods), while for the ε-greedy techniques, Emax is set to
the maximum number of episodes required by the LRND to converge.

Figure 4 reports, as an example, the evolution of Qh in Eq. (15) normalized
with respect to its steady state value, Q∞, in the case of H-LRNDb and Sce-
nario 1 for different values of α and γ. The figure shows how the tree reaches
a steady value after a certain number of episodes and how α and γ affect the
converge in this specific training instance.

The simulation results are reported both numerically in Tables 1–3 and
graphically in Figs. 5–7; they are computed running each case study 50 times
and averaging the obtained results. In the following, the subscripts b and
d represent the Breadth and Depth exploration, respectively. As a general
consideration, the H-εGd algorithm exhibits optimal or slightly sub-optimal
performance for each of the three considered metrics and scenarios. More in
detail, H-εGd significantly outperforms the other methods concerning Ess es-
pecially in case of complex scenarios (see Table 3). With regards to motion
planning queries MPq, which equals the number of explored tree branches, H-
εGb outperforms the other ones and slightly H-εGd. Furthermore, regarding
the number of episodes E1st necessary for the learning agent to find the first
optimal path, it is worth noticing that depth approaches exhibits significantly
better performance with respect to breadth ones with very similar results for
the three exploration policies LNRD, H-LNRD, H-εG.
Finally, increasing the learning rate α or decreasing the discount factor γ
lead to better performance for each of the proposed exploration strategies and
performance indexes; in detail, by adopting α = 1 combined with heuristics
approaches, the agent learns more quickly the optimal solution.

In support of Fig. 8 the three exploration policies are described in Sect. 4.2.
Those are compared with respect to the performance indexes described above.
As it is possible to notice, the magnitude of each indicator is reduced signifi-
cantly with respect to the Breadth approach by using the Depth approach.

In Figs. 9 and 10, the minimum and maximum average values related
to the first time in which the agent reaches the target (through the optimal

Objects Relocation in Clutter via Tree-based Q-Learning 15

Table 1: Parametric analysis considering (α, γ) parameters and as evaluation
criteria: the number of episodes Ess necessary to converge, the number of
motion planning queries MPq and the the episode number E1st in which the
optimal solution is reached for the first time. This case is for the Scenario 1
with obstacles number No = 5.

[α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st

[0.3,0.9]

LRNDb 511 84 50

[0.3,0.5]

LRNDb 441 84 51

[0.3,0.1]

LRNDb 283 84 43
H-LRNDb 487 74 32 H-LRNDb 422 74 32 H-LRNDb 267 74 28
H-εGb 365 69 32 H-εGb 289 67 39 H-εGb 235 73 28
LRNDd 449 84 30 LRNDd 388 84 26 LRNDd 233 84 28
H-LRNDd 414 74 14 H-LRNDd 372 74 7 H-LRNDd 203 74 8
H-εGd 364 72 12 H-εGd 315 71 15 H-εGd 165 73 12

[0.5,0.9]

LRNDb 355 84 52

[0.5,0.5]

LRNDb 296 84 48

[0.5,0.1]

LRNDb 246 84 48
H-LRNDb 344 74 31 H-LRNDb 282 74 32 H-LRNDb 212 74 29
H-εGb 229 64 34 H-εGb 245 67 34 H-εGb 176 71 32
LRNDd 291 84 22 LRNDd 245 84 18 LRNDd 176 84 18
H-LRNDd 272 70 12 H-LRNDd 226 74 11 H-LRNDd 149 74 12
H-εGd 271 70 14 H-εGd 214 70 9 H-εGd 141 73 12

[1,0.9]

LRNDb 170 84 50

[1,0.5]

LRNDb 173 84 51

[1,0.1]

LRNDb 177 84 45
H-LRNDb 151 74 29 H-LRNDb 152 74 34 H-LRNDb 142 74 33
H-εGb 146 65 39 H-εGb 148 64 29 H-εGb 131 69 30
LRNDd 122 84 26 LRNDd 104 84 23 LRNDd 114 84 20
H-LRNDd 94 74 13 H-LRNDd 95 74 11 H-LRNDd 87 74 10
H-εGd 82 70 12 H-εGd 86 70 13 H-εGd 79 72 13

Table 2: Parametric analysis considering (α, γ) parameters and as evaluation
criteria: the number of episodes Ess necessary to converge, the number of
motion planning queries MPq and the the episode number E1st in which the
optimal solution is reached for the first time. This case is for the Scenario 2
with obstacles number No = 10.

[α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st

[0.3,0.9]

LRNDb 1606 623 449

[0.3,0.5]

LRNDb 1383 622 437

[0.3,0.1]

LRNDb 1043 622 470
H-LRNDb 1596 598 410 H-LRNDb 1279 598 426 H-LRNDb 952 598 414
H-εGb 1026 518 427 H-εGb 868 572 407 H-εGb 930 593 421
LRNDd 1035 622 19 LRNDd 813 622 16 LRNDd 485 622 16
H-LRNDd 974 598 16 H-LRNDd 688 598 15 H-LRNDd 382 598 16
H-εGd 673 594 15 H-εGd 553 595 13 H-εGd 299 596 15

[0.5,0.9]

LRNDb 1275 622 451

[0.5,0.5]

LRNDb 1118 622 451

[0.5,0.1]

LRNDb 939 622 444
H-LRNDb 1211 598 414 H-LRNDb 1061 598 420 H-LRNDb 887 598 430
H-εGb 853 491 411 H-εGb 718 548 398 H-εGb 861 593 412
LRNDd 647 622 15 LRNDd 564 622 14 LRNDd 396 622 13
H-LRNDd 594 598 19 H-LRNDd 458 598 13 H-LRNDd 293 598 13
H-εGd 468 585 15 H-εGd 388 592 13 H-εGd 285 597 16

[1,0.9]

LRNDb 910 622 432

[1,0.5]

LRNDb 894 622 433

[1,0.1]

LRNDb 823 621 451
H-LRNDb 855 597 419 H-LRNDb 867 598 400 H-LRNDb 800 597 423
H-εGb 690 456 375 H-εGb 630 519 414 H-εGb 771 590 416
LRNDd 268 622 16 LRNDd 255 622 21 LRNDd 217 621 10
H-LRNDd 227 597 15 H-LRNDd 226 598 12 H-LRNDd 190 598 19
H-εGd 219 572 21 H-εGd 222 581 13 H-εGd 181 592 14

16 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

1.2
Q-Tree values

Q
h
/
Q

∞

Episodes

Q[α,γ]
Q[0.3,0.9]

Q[0.3,0.5]

Q[1,0.5]

Q[1,0.9]

Q[0.5,0.5]

Q[0.5,0.9]

Q[1,0.1]

Q[0.5,0.1]

Q[0.3,0.1]

Fig. 4: Plots represent the sum of all tree edge values Qh normalized with respect to the
steady state value Q

∞
for different values of α and γ in the case of H-LRNDb approach and

Scenario 3.

sequence) for each scenarios are reported. As can be seen, in terms of reaching
for the first time the optimal solution, the Depth drastically outperforms the
Breadth approach.

In order to verify the robustness of the methods with respect to the objects
position, we have validated our algorithm considering 10 additional simulations
with random objects position for Scenario 1 with No = 5.

Table 4 shows the obtained results, which demonstrates that the considerations
above are still valid in these new scenarios.

5.2 Experimental results

In the experimental case study, No = 10 obstacles (bottles) are considered.
Furthermore, we assume that the perception module is enabled to detect and
recognize obstacles and target, providing their poses accurately. The scenario
is shown in Fig. 12 and two shelves are present: the top shelf is the starting
location for both objects and target, which needs to be relocated to the bottom
shelf. Objects are initially positioned on the top shelf as in Fig. 12; in addition,
objects have different colors meaning they have different weights φi such as
the green bottle is the target, while φ1 = 0.15, φ2 = 0.13, φ3 = 0.23, φ4 = 0.44,
φ5 = 0.65, φ6 = 0.78, φ7 = 0.13, φ8 = 0.34, φ9 = 0.56, φ10 = 0.89 Kg.

Objects Relocation in Clutter via Tree-based Q-Learning 17

Table 3: Parametric analysis considering (α, γ) parameters and as evaluation
criteria: the number of episodes Ess necessary to converge, the number of
motion planning queries MPq and the the episode number E1st in which the
optimal solution is reached for the first time. This case is for the Scenario 3
with obstacles number No = 15.

[α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st

[0.3,0.9]

LRNDb 5035 1674 1049

[0.3,0.5]

LRNDb 4519 1672 1021

[0.3,0.1]

LRNDb 3542 1658 1045
H-LRNDb 4802 1605 958 H-LRNDb 3965 1600 1018 H-LRNDb 3213 1585 968
H-εGb 2829 1353 987 H-εGb 2809 1520 993 H-εGb 3051 1572 978
LRNDd 2511 1675 11 LRNDd 1712 1675 13 LRNDd 708 1673 11
H-LRNDd 2454 1606 12 H-LRNDd 1694 1606 11 H-LRNDd 684 1605 13
H-εGd 1342 1587 10 H-εGd 777 1597 11 H-εGd 658 1600 10

[0.5,0.9]

LRNDb 4050 1670 1040

[0.5,0.5]

LRNDb 3730 1664 1069

[0.5,0.1]

LRNDb 3293 1653 1054
H-LRNDb 3985 1599 963 H-LRNDb 3579 1593 971 H-LRNDb 3047 1581 995
H-εGb 2397 1299 984 H-εGb 2593 1506 992 H-εGb 2981 1571 955
LRNDd 1590 1675 14 LRNDd 1712 1674 13 LRNDd 565 1672 13
H-LRNDd 1562 1606 10 H-LRNDd 1694 1606 11 H-LRNDd 530 1603 8
H-εGd 906 1572 13 H-εGd 553 1588 11 H-εGd 499 1596 9

[1,0.9]

LRNDb 3278 1655 1027

[1,0.5]

LRNDb 3245 1653 1025

[1,0.1]

LRNDb 3154 1649 1067
H-LRNDb 3027 1580 987 H-LRNDb 3038 1581 980 H-LRNDb 2931 1578 956
H-εGb 2380 1268 1022 H-εGb 2452 1500 995 H-εGb 2832 1566 982
LRNDd 618 1672 12 LRNDd 564 1670 10 LRNDd 451 1669 13
H-LRNDd 594 1604 15 H-LRNDd 634 1605 11 H-LRNDd 430 1602 12
H-εGd 414 1530 12 H-εGd 382 1556 11 H-εGd 383 1591 11

Objects are relocated by the 7-DoF Jaco2 robot equipped by a three fin-
ger gripper, manufactured by KINOVA company and available in the LAI-
Robotics laboratory of the University of Cassino and Southern Lazio, Italy.

Figure 11 shows the Denavit-Hartenberg parameters (also see Table 5)
summarizing the kinematics parameters of the robot, whereas Table 6 and
Table 7 report the mechanical joint position and velocity limits, respectively.

In order to acquire the objects’ position, an INTEL RealSense D455 RGB-
D camera is adopted together with an ArUco marker [33] which provides a
common reference frame and YOLO (You Only Look Once) software [34] for
object segmentation. A desktop PC with CPU Intel(R) Core(TM) i9-9900KF
3.60GHz and GPU GeForce RTX 2070 Super equipped with Ubuntu 18.04 and
MATLAB 2020b is adopted in order to find the optimal sequence by running
the RL-Task Planner in Fig. 1. The same PC is equipped with the ROS (Robot
Operating System) framework which is in charge to execute the Motion Planner
and control the real robot. The software-hardware architecture is reported in
Fig. 13. More in detail, the perception module receives the real scene from the
camera and provides information on the objects pose to the RL-Task Planner
implemented in MATLAB. This latter selects an action according with its
policy and sends it to the Motion Planner implemented in C++. Finally, if
there is a free-obstacle path that satisfies all the joint constraints, the robot
receives the computed joint velocities to perform the task.

18 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

Alg. Ess MPq E1st

LRNDb 177 97 70
H-LRNDb 168 84 41
H-εGb 127 59 55
LRNDd 98 97 10
H-LRNDd 89 84 11
H-εGd 84 75 11

(a) Case n. 1

Alg. Ess MPq E1st

LRNDb 200 84 48
H-LRNDb 185 73 23
H-εGb 114 57 24
LRNDd 130 83 5
H-LRNDd 100 55 5
H-εGd 47 48 4

(b) Case n. 2

Alg. Ess MPq E1st

LRNDb 167 98 45
H-LRNDb 153 88 36
H-εGb 107 66 26
LRNDd 96 98 14
H-LRNDd 83 88 16
H-εGd 76 79 12

(c) Case n.3

Alg. Ess MPq E1st

LRNDb 167 94 37
H-LRNDb 151 83 27
H-εGb 129 64 33
LRNDd 94 93 24
H-LRNDd 80 83 8
H-εGd 69 76 5

(d) Case n. 4

Alg. Ess MPq E1st

LRNDb 200 104 31
H-LRNDb 170 87 13
H-εGb 112 54 12
LRNDd 119 103 12
H-LRNDd 99 87 7
H-εGd 69 76 6

(e) Case n. 5

Alg. Ess MPq E1st

LRNDb 187 84 26
H-LRNDb 114 57 14
H-εGb 93 42 17
LRNDd 122 84 5
H-LRNDd 58 57 3
H-εGd 46 47 4

(f) Case n. 6

Alg. Ess MPq E1st

LRNDb 166 91 32
H-LRNDb 135 71 20
H-εGb 111 55 17
LRNDd 100 92 12
H-LRNDd 77 71 8
H-εGd 66 63 7

(g) Case n. 7

Alg. Ess MPq E1st

LRNDb 130 71 30
H-LRNDb 94 49 16
H-εGb 84 41 16
LRNDd 82 71 18
H-LRNDd 53 49 8
H-εGd 41 44 8

(h) Case n. 8

Alg. Ess MPq E1st

LRNDb 206 82 25
H-LRNDb 166 55 17
H-εGb 112 40 15
LRNDd 117 83 4
H-LRNDd 84 55 4
H-εGd 56 46 2

(i) Case n. 9

Alg. Ess MPq E1st

LRNDb 162 82 15
H-LRNDb 138 61 5
H-εGb 95 38 5
LRNDd 103 82 6
H-LRNDd 85 61 5
H-εGd 58 51 5

(j) Case n. 10

Table 4: Additional Simulation considering 10 random cluttered different sce-
narios with No = 5.

Objects Relocation in Clutter via Tree-based Q-Learning 19

0

100

200

300

400

500

600

Steady State - Scenario 1

[α
0.
3
, γ

0.
9
]

[α
0.
5
, γ

0.
9
]

[α
1
, γ

0.
9
]

[α
0.
3
, γ

0.
5
]

[α
0.
5
, γ

0.
5
]

[α
1
, γ

0.
5
]

[α
0.
3
, γ

0.
1
]

[α
0.
5
, γ

0.
1
]

[α
1
, γ

0.
1
]

E
ss

NH-LRNDb

H-LRNDb

H-εGb

NH-LRNDd

H-LRNDd

H-εGd

Fig. 5: Steady State Parametric Analysis: This bar graph is relative to the reaching of
optimal solution varying α and γ for the Scenario 1.

joint a α d θ

(m) (◦) (m) (◦)
1 0 90◦ 0.2755 θ1
2 0 90◦ 0 θ2
3 0 90◦ −0.410 θ3
4 0 90◦ −0.0098 θ4
5 0 90◦ −0.3111 θ5
6 0 90◦ 0 θ6
7 0 0◦ 0.2638 θ7

Table 5: DH parameter for the KINOVA Jaco2.

Each one of the actions selected by the RL-Task Planner is related to the
relocation of one of the objects in the scene. Regarding the motion planner in
Sect. 4.1, the following task hierarchy is considered:

1. mechanical joint limits avoidance;
2. self-collision avoidance;
3. obstacle avoidance between the end-effector and the other objects;
4. position and orientation of the arm’s end-effector.

Once the agent is trained, the robot starts relocating objects according
to the found sequence, namely ST

4 = {O9, O3, O1, O6, T}; a sequence of snap-

20 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

0

500

1000

1500

2000

Steady State - Scenario 2

[α
0.
3
, γ

0.
9
]

[α
0.
5
, γ

0.
9
]

[α
1
, γ

0.
9
]

[α
0.
3
, γ

0.
5
]

[α
0.
5
, γ

0.
5
]

[α
1
, γ

0.
5
]

[α
0.
3
, γ

0.
1
]

[α
0.
5
, γ

0.
1
]

[α
1
, γ

0.
1
]

E
ss

NH-LRNDb

H-LRNDb

H-εGb

NH-LRNDd

H-LRNDd

H-εGd

Fig. 6: Steady State Parametric Analysis: This bar graph is relative to the reaching of
optimal solution varying α and γ for the Scenario 2.

joint Min Max

(rad) (rad)
1 −∞ ∞
2 0.82 5.46
3 −∞ ∞
4 0.52 5.76
5 −∞ ∞
6 1.13 5.14
7 −∞ ∞

Table 6: Positions limits for the KINOVA Jaco2

shots relative to object relocation is reported in Fig. 14, while a video of the
experiment can be found here1.

6 Conclusions

This work considered the problem of retrieving a target from clutter through
a robot manipulator. A two-layered architecture is devised to the scope made

1 http://www.youtube.com/watch?v=2aTqmWzmiJ8

http://www.youtube.com/watch?v=2aTqmWzmiJ8

Objects Relocation in Clutter via Tree-based Q-Learning 21

0

1000

2000

3000

4000

5000

6000

Steady State - Scenario 3

[α
0.
3
, γ

0.
9
]

[α
0.
5
, γ

0.
9
]

[α
1
, γ

0.
9
]

[α
0.
3
, γ

0.
5
]

[α
0.
5
, γ

0.
5
]

[α
1
, γ

0.
5
]

[α
0.
3
, γ

0.
1
]

[α
0.
5
, γ

0.
1
]

[α
1
, γ

0.
1
]

E
ss

NH-LRNDb

H-LRNDb

H-εGb

NH-LRNDd

H-LRNDd

H-εGd

Fig. 7: Steady State Parametric Analysis: This bar graph is relative to the reaching of
optimal solution varying α and γ for the Scenario 3.

EssEss

E1stE1st MPqMPq

4050

3985

2397

1589

1362

906

LRNDb

H-LRNDb

H-εGb

LRNDd

H-LRNDd

H-εGd

Fig. 8: Comparison between Breadth (left) and Depth (right) approaches, considering the
proposed tree exploration strategies for the Scenario 3, with learning rate α = 0.5 and
discount factor γ = 0.9.

by a Task and Motion Planners. The former represents the high level and is
responsible for learning the optimal sequence of objects to relocate, whereas
the latter, at a lower level, is in charge of planning robot trajectories taking
into account robot and environmental constraints. In detail, the Task planner
makes use of a Q-learning algorithm on a dynamic tree structure, and three

22 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

0

200

400

600

800

1000

1200

1400

First Time Optimal Solution - Breadth

E
1
s
t

No = 5 No = 10 No = 15

LRNDb H-LRNDb H-εGb

Fig. 9: Three learning policies comparison: Average, minimum and maximum episode rel-
ative at the first time that the agent reaches the target T through the optimal sequence
considering Breadth search approach. The statistics are based on 50 training with α = 0.5
and γ = 0.9.

joint Min Max

(rad/s) (rad/s)
1 −0.81 0.81
2 −0.81 0.81
3 −0.81 0.81
4 −0.81 0.81
5 −1.11 1.11
6 −1.11 1.11
7 −1.11 1.11

Table 7: Velocities limits for the KINOVA Jaco2

different RL-policies with two tree exploration strategies are compared in sce-
narios with different complexity. The extensive simulation campaigns shows
that the ε-greedy approach with Depth search and heuristics allows to obtain
on average the best performance.
This approach was, then, applied on a real case study where bottles have to
be relocated by a robot manipulator. As future work, DQN (Deep Q-Network)
will be investigated to leverage their generalization capabilities together with
a POMDP (Partially Observable Markov Decision Process) modeling to tackle
the case of hidden objects.

Objects Relocation in Clutter via Tree-based Q-Learning 23

0

20

40

60

80

100

120

First Time Optimal Solution - Depth

E
1
s
t

No = 5 No = 10 No = 15

LRNDd H-LRNDd H-εGd

Fig. 10: Three learning policies comparison: Average, minimum and maximum episode
relative at the first time that the agent reaches the target T through the optimal sequence
considering Depth search approach. The statistics are based on 50 training with α = 0.5
and γ = 0.9.

24 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

x0
y0

z0

x1

y1

z1 x2
y2

z2

x3

y3

z3 x4y4

z4

x5

y5

z5

x6 y6

z6

x7 y7

z7

d1

d3

d4

d5

d7

Fig. 11: KINOVA Jaco2 with reference frames in Denavit-Hartenberg conven-
tion.

Objects Relocation in Clutter via Tree-based Q-Learning 25

Marker

Objects

Robot

Intel

RealSense

Fig. 12: Left. The robotic setup adopted to demonstrate the devised approach. Right. A
top view representation of target (in green) and obstacles in their initial configuration.

PERCEPTION MOTION PLANNER

RL-TASK

PLANNER

Fig. 13: Software-Hardware Architecture: The perception module receives the
scene from the real camera and provides information on the objects pose to
the RL-Task Planner (MATLAB). This latter selects an action according with
its policy and sends the action to the Motion Planner (C++). Finally, if there
is a free-obstacle path that satisfies all the joint constraints, the robot receives
the computed joint velocities to perform the task.

26 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

1

2

3

4

5

6

7

8

9

10

Fig. 14: Robot manipulator during the validation phase: The KINOVA Jaco2 is moving
the objects in the real world scenario.

Objects Relocation in Clutter via Tree-based Q-Learning 27

Declarations

– Funding: The Authors declare that this work was supported by Diparti-
mento di Eccellenza granted to DIEI Department, University of Cassino
and Southern Lazio, by H2020-ICT project CANOPIES (Grant Agree-
ment N. 101016906) and by POR FSE LAZIO 2014-2020, Project DE
G06374/2021.

– Conflict of interest: The Authors declare that they have no conflict of
interest.

– Code or data availability: Not applicable

– Authors’ Contributions: All Authors have contributed equally to the
ideas, theories and analysis of results. The first draft of the manuscript
was written by Giacomo Golluccio.
Paolo Di Lillo, Daniele Di Vito, Alessandro Marino and Gianluca Antonelli
commented and revised this first version. All authors read and approved
the final manuscript.

– Ethical approval: Not applicable.

– Consent to participate: Not applicable.

– Consent for publication: Not applicable.

References

1. Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris
Hauser, Kei Okada, Alberto Rodriguez, Joseph M Romano, and Peter R Wurman.
Analysis and observations from the first amazon picking challenge. IEEE Trans. on
Automation Science and Engineering, 15(1):172–188, 2016.

2. Federico Ceola, Elisa Tosello, Luca Tagliapietra, Giorgio Nicola, and Stefano Ghidoni.
Robot task planning via deep reinforcement learning: a tabletop object sorting appli-
cation. In 2019 IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), pages
486–492. IEEE, 2019.

3. Changjoo Nam, Jinhwi Lee, Sang Hun Cheong, Brian Y Cho, and ChangHwan Kim.
Fast and resilient manipulation planning for target retrieval in clutter. In 2020 IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 3777–3783. IEEE, 2020.

28 G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli

4. Jinhwi Lee, Younggil Cho, Changjoo Nam, Jonghyeon Park, and Changhwan Kim. Ef-
ficient obstacle rearrangement for object manipulation tasks in cluttered environments.
In 2019 Int. Conf. on Robotics and Automation (ICRA), pages 183–189. IEEE, 2019.

5. Mike Stilman and James Kuffner. Planning among movable obstacles with artificial
constraints. The Int. Journ. of Robotics Research, 27(11-12):1295–1307, 2008.

6. Kaiyu Hang, Johannes A Stork, Florian T Pokorny, and Danica Kragic. Combinato-
rial optimization for hierarchical contact-level grasping. In 2014 IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 381–388. IEEE, 2014.

7. Mike Stilman, Jan-Ullrich Schamburek, James Kuffner, and Tamim Asfour. Manip-
ulation planning among movable obstacles. In Proceedings 2007 IEEE Int. Conf. on
Robotics and Automation, pages 3327–3332. IEEE, 2007.

8. Weihao Yuan, Kaiyu Hang, Danica Kragic, Michael Y Wang, and Johannes A
Stork. End-to-end nonprehensile rearrangement with deep reinforcement learning and
simulation-to-reality transfer. Robotics and Autonomous Systems, 119, 2019.

9. Joshua A Haustein, Jennifer King, Siddhartha S Srinivasa, and Tamim Asfour. Kinody-
namic randomized rearrangement planning via dynamic transitions between statically
stable states. In 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), pages
3075–3082. IEEE, 2015.

10. Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki. Incre-
mental task and motion planning: A constraint-based approach. In Robotics: Science
and systems, volume 12, page 00052. Ann Arbor, MI, USA, 2016.

11. Giray Havur, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu. Geometric rearrange-
ment of multiple movable objects on cluttered surfaces: A hybrid reasoning approach.
In 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 445–452. IEEE,
2014.

12. Hossein Karami, Antony Thomas, and Fulvio Mastrogiovanni. A task-motion plan-
ning framework using iteratively deepened and/or graph networks. arXiv preprint
arXiv:2104.01549, 2021.

13. Manfred Eppe, Phuong DH Nguyen, and Stefan Wermter. From semantics to execution:
Integrating action planning with reinforcement learning for robotic causal problem-
solving. Frontiers in Robotics and AI, 6:123, 2019.

14. Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,
129(1-2):5–33, 2001.

15. Ahmed H Qureshi, Arsalan Mousavian, Chris Paxton, Michael C Yip, and Dieter
Fox. Nerp: Neural rearrangement planning for unknown objects. arXiv preprint
arXiv:2106.01352, 2021.

16. Marwan Qaid Mohammed, Kwek Lee Chung, and Chua Shing Chyi. Review of deep
reinforcement learning-based object grasping: Techniques, open challenges and recom-
mendations. IEEE Access, 2020.

17. Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in
robotics: Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

18. Wissam Bejjani, Wisdom C Agboh, Mehmet R Dogar, and Matteo Leonetti. Occlusion-
aware search for object retrieval in clutter. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4678–4685. IEEE, 2021.

19. Yuhong Deng, Xiaofeng Guo, Yixuan Wei, Kai Lu, Bin Fang, Di Guo, Huaping Liu, and
Fuchun Sun. Deep reinforcement learning for robotic pushing and picking in cluttered
environment. In 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 619–626. IEEE.

20. Bohan Wu, Iretiayo Akinola, and Peter K Allen. Pixel-attentive policy gradient for
multi-fingered grasping in cluttered scenes. In 2019 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), pages 1789–1796. IEEE, 2019.

21. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

22. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

23. Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

Objects Relocation in Clutter via Tree-based Q-Learning 29

for deep reinforcement learning. In Int. Conf. on Machine Learning, pages 1928–1937.
PMLR, 2016.

24. Giacomo Golluccio, Daniele Di Vito, Alessandro Marino, Alessandro Bria, and Gianluca
Antonelli. Task-motion planning via tree-based q-learning approach for robotic object
displacement in cluttered spaces. In Proceedings of the 18th Int. Conf. on Informatics
in Control, Automation and Robotics - ICINCO, pages 130–137. INSTICC, SciTePress,
2021.

25. Giacomo Golluccio, Daniele Di Vito, Alessandro Marino, and Gianluca Antonelli.
Robotic weight-based object relocation in clutter via tree-based q-learning approach
using breadth and depth search techniques. In 2021 20th Int. Conf. on Advanced
Robotics (ICAR), pages 676–681. IEEE, 2021.

26. Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–
292, 1992.

27. Daniele Di Vito, Mathieux Bergeron, David Meger, Gregory Dudek, and Gianluca An-
tonelli. Dynamic planning of redundant robots within a set-based task-priority inverse
kinematics framework. In 2020 IEEE Conf. on Control Technology and Applications
(CCTA), pages 549–554. IEEE.

28. James J. Kuffner and Steven M. LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE Int.
Conf. on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol-
ume 2, pages 995–1001. IEEE, 2000.

29. Stefano Chiaverini. Singularity-robust task-priority redundancy resolution for real-time
kinematic control of robot manipulators. IEEE Trans. on Robotics and Automation,
13(3):398–410, 1997.

30. Bruno Siciliano and J.-J. E. Slotine. A general framework for managing multiple tasks
in highly redundant robotic systems. In Proc. Fifth Int. Conf. on Advanced Robotics
(ICAR), pages 1211–1216, Pisa, Italy, 1991. IEEE.

31. Paolo Di Lillo, Filippo Arrichiello, Daniele Di Vito, and Gianluca Antonelli. BCI-
controlled assistive manipulator: developed architecture and experimental results. IEEE
Trans. on Cognitive and Developmental Systems, pages 1–1, 2020.

32. Paolo Di Lillo, Enrico Simetti, Francesco Wanderlingh, Giuseppe. Casalino, and Gi-
anluca. Antonelli. Underwater intervention with remote supervision via satellite com-
munication: Developed control architecture and experimental results within the dexrov
project. IEEE Trans. on Control Systems Technology, 29(1):108–123, 2021.

33. Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas, and
Manuel Jesús Maŕın-Jiménez. Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition, 47(6):2280–2292, 2014.

34. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conf. on Computer
Vision and Pattern Recognition, pages 779–788, 2016.

	Introduction
	Mathematical background
	Problem formulation
	Proposed solution
	Simulation and experiments
	Conclusions

