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Abstract

The reference frame of this research is the radical transformation of electrical
systems which are evolving toward smart grids.

The main motivations behind this development are political and technical
in nature including the growth of energy demand, environmental problems,
international climate agreements, the diffusion of distributed generation and
the diffusion of new components and new technologies, including electric
energy storage systems.

A contribution to this evolution is the increase of Distributed Generation
(DG) from Renewable Energy Sources (RESs) as a form of energy produc-
tion with zero emissions. In this new scenario, the distribution systems
completely change their role and functions, gradually moving from "passive"
networks, in which energy flows from the transmission system to the distri-
bution nodes of consumption, to "active" networks", in which the consumer
becomes also producer, with consequent bi-directional power flows along the
distribution feeders.

As the grid has changed compared to traditional operation, new technical
problems have emerged, and in particular the voltage control in this new
type of grid has been tackled in recent years. In fact, the DGs mainly use
"intermittent" RESs which can cause sudden and rapid variations of the
power injections thus inducing over/under voltages.

Conventional voltage regulation relies on transformer on-load tap-changers
in HV/MV substations, step voltage regulators and capacitor banks, which
have slow response times. It is therefore necessary to identify new devices,
management tools and control strategies in the evolving distribution systems.

At the same time, an important issue to consider is the need for eco-
nomic solutions, which allow to improve the flexibility of existing networks,
allowing for a large increase Distributed Energy Resources (DERs), but at
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the same time require acceptable investments.

In this research, taking note of the imminent and necessary evolution of
the electricity system, a solution is sought to the problem of optimizing the
voltage, starting from a modeling of the system itself, and arriving at control
via a decentralized approach with different methodologies. Summarizing, the
three main topics treated in this Thesis are:

• PART I: the evolution of the traditional electrical systems toward
Smart Grids;

• PART II: the Distribution System linear modelling, both exact and
approximated with and without losses;

• PART III: the voltage optimization problem in Smart Distribution
Grids using the distributed and decentralized approaches in three dif-
ferent ways.

In particular, after studying the characteristics of different control struc-
tures, the decentralized approach is preferred, where the distribution system
is usually divided into voltage control zones. This approach ensures the
optimal solution for each Voltage Control Zone (VCZ) and requires a light
communication infrastructure.

To model the distribution system, in the presence of DER, after repre-
senting it through the equivalent circuit, we started from the branch, con-
sidering three different types of modeling. The exact one, the linearized one
and the linearized one with losses. By merging more branches, it is obtained
the feeder modeling, with and without losses. Finally, the modeling of the
lateral is carried out, with and without losses,

Finally, a structural load flow algorithm is defined to calculate the Sensi-
tivity Matrices of the Powers to the Injected Powers, Sensitivity Matrices of
the Voltages to the Injected Powers and Sensitivity Matrices of the Voltages
to the Voltage Regulators.

In the last part of this research, the problem of optimizing voltage in
distribution networks is tackled adopting the decentralized approach with
different methodologies: the alternate direction multiplier method (ADMM)
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and the auxiliary problem principle (APP). Finally, the problem of optimiz-
ing voltage profiles in energy distribution networks has been tackled with a
two-step procedure in which traditional and innovative controllers are inte-
grated.

Therefore, after an analysis of the reasons that are leading the system to
evolve, the problem of optimizing voltage in smart distribution networks is
addressed. A method has been defined for modeling the system itself both in
the presence and absence of losses, starting from the brach, to the feeder up to
the lateral. The control and management of this new system is achieved with
the decentralized approach with different methodologies. Concluding with
numerical tests on distribution test networks to demonstrate the effectiveness
of the proposed tools.
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Part I

Introduction to smart grids
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Chapter 1

The Evolution of the
Traditional Electrical System

Traditionally it is known that to produce electricity it is necessary to exploit
a primary energy source, which is transformed into electricity in the produc-
tion plants to be easily transported. After transport, it is made available to
various users, in forms that can be used directly.
More precisely, the Italian electrical system Fig. 1.1 consists of four subsys-
tems, namely production, transmission, distribution, and user.

Transmission Distribu!on UserProduc!on

Figure 1.1: The subdivision of the Italian electrical system

This traditional electrical system structure is rapidly evolving towards
smart grids.
Naturally, the main motivations behind this development are political and
technical in nature:

• The growth of energy demand

• Environmental problems
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CHAPTER 1. THE EVOLUTION OF THE TRADITIONAL ELECTRICAL SYSTEM

• International climate agreements

• The diffusion of distributed generation

• The diffusion of new components and new technologies

In recent decades, the International Energy Agency has recorded a growth
in the world energy consumption which is strongly correlated to emerging
economies and population growth, because of the link between economic
growth and primary energy energy consumption.

Since most energy is produced from fossil fuels, two fundamental prob-
lems arise.

First of all, a substantial increase in global CO2 emissions into the at-
mosphere is taking place with a consequent increase in global warming, re-
sponsible for climate change.

Secondly, the depletion of fuel reserves will affect future generations on
energy security and costs, i.e. on the availability of energy reliable supplies
at reasonable prices.

The energy sector has therefore begun to undergo a radical transforma-
tion, following the environment goals, which are evolving from the Kyoto
protocol, to the Paris agreement and the "climate-energy" package. The
search for solutions to atmospheric pollution and the consequent climate
change is promoted, favoring DG from RES as a form of energy production
with zero impact. The plants connected to the distribution networks Fig. 1.2
mainly exploit water, wind, solar irradiance and biomasses/biofuels as RESs.

Hydroelectric Wind Photovoltaic Biomass

Figure 1.2: The Renewable Sources

Furthermore, in the field of electrical systems, new Information and Com-
munication Technologies (ICT) and new components Fig. 1.3 with innovative
features and functions are increasingly spreading, such as intelligent loads
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CHAPTER 1. THE EVOLUTION OF THE TRADITIONAL ELECTRICAL SYSTEM

Intelligent loads Storage systems

Figure 1.3: The New Components

(e.g. shiftable, interruptible) and storage systems (e.g. electric vehicles) [1].

However, let us remember that the function of the electrical system is
threefold:

1) supply the energy required by the load

2) balancing the powers instant by instant

3) in compliance with the constraints of proper functioning and power qual-
ity.

1.1 Differences Between the Traditional Electrical
System and Smart Grids

Since its inception in the 1960s, the national electrical system has been con-
ceived with a hierarchical structure Fig. 1.4 in which there is a relatively
limited number of large production plants, capable of supplying energy and
power to the loads through the transmission and distribution networks. To-
day, however, this paradigm is undergoing a deep transformation.

The correct operation of the electrical system is no longer guaranteed in
the presence of production plants from renewable sources.

It is well known that production plants powered by renewable sources
cannot be regulated as in most cases they exploit a primary energy source
that is variable and random in nature. Therefore, a new additional cause
of randomness is introduced in the electricity balance which is not linked to
the variability of the loads.
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CHAPTER 1. THE EVOLUTION OF THE TRADITIONAL ELECTRICAL SYSTEM

Produc!on Transmission Distribu!on User

Figure 1.4: The Traditional Electrical System

Furthermore, the present-day control systems do not provide for the ad-
vanced regulation of the distribution systems and distributed generators. In-
deed it could be possible to ask DGs to adjust the supply of electricity to load
requests, also safeguarding the quality of the energy supply service, but it is
possible only in presence of electric Energy Storage Systems (EES)) [2], [3].

For this reason, distribution systems must evolve and transform into the
intelligent distribution networks of the future, named Smart Grids Fig. 1.5.

The smart grid is an electrical system to which are connected:

• Electricity production plants,

• Energy storage systems,

• Controlled and uncontrolled loads

and which is equipped with:

• monitoring and control systems,

• a communication infrastructure

On the one hand the strong penetration of the DGs by RESs guarantees
a lower energy dependence on foreign sources, lower distribution losses and
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Produc!on Transmission Distribu!on

User

Intelligent loads

Storage systems

Distributed Genera!on

DG

Figure 1.5: The New Electrical System

a reduction of greenhouse gas emissions into the atmosphere, on the other
hand, it introduces new problems on the networks, in particularly distri-
bution ones, accentuated by the random nature of the RESs. In fact, the
distribution system completely changes its role and functions, being grad-
ually destined to transform itself from a "passive" network to an "active"
network. "in which the consumer also becomes a producer, with consequent
bi-directionality of power flows [4].
Therefore, since the network has changed with respect to the traditional
type, new technical problems have naturally emerged for voltage control [5].
New techniques must therefore be developed to ensure efficient, reliable, and
safe operation of the distribution systems of the future [6].
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1.2 The Problem of Voltage Regulation in Smart
Grids

Changes in network operation from passive to active can cause nodal voltage
limits to be violated, resulting in poor power quality [7]. The main problem
consists in the fact that the DGs mainly use "intermittent" primary energy
sources which can give rise to sudden and rapid injections of power causing
over / under voltages. therefore for a correct operation of the network, it is
necessary to be able to control the active and reative powers injected and
absorbed defining a new control system of the distribution network [8], [9].

Present-day voltage regulation devices may not respond adequately to the
numerous and rapid changes in voltage. In fact, conventional control devices
such as on-load tap-changer of the transformer in HV / MV substations, step
voltage regulators and capacitor banks, have too slow response times [10],
[11], [12]. Then, the integration of new control devices is necessary.

It is therefore necessary to develop new flexible voltage control strategies
to keep the nodal voltages within the admissible limits. Such strategies
should be able to integrate the conventional control devices with the new
devices present on the network, such as DGs, electric vehicles and control-
lable loads [13], [14]. These letter devices will be referred to as Distributed
Energy Resources (DERs).

In this frame, an important issue is seeking economic solutions that do not
require significant changes in the structure of the network but, at the same
time, improve the flexibility of existing networks by exploiting the increas-
ing number of DERs. It is therefore necessary to identify strategies for the
management and control of the optimal distribution network [15], which is
the focus of this Thesis.
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Chapter 2

Control Strategies of Smart
Grids

The new strategies for voltage control in distribution systems can be divided
into two main categories, according to whether they rely or not on the use
of a communication infrastructure [16], [8]:

• Local control,

• Communication-based control architectures.

In a local control Fig. 2.1, the controllers of both DERs and conventional
Volt/Var devices use measurements at the point of common coupling (PCC)
to individually elaborate and actuate a control action without requiring any
information exchange among the DERs and between the DERs and a central
controller.
The result is a globally non-optimal control of voltages, but it is the lowest-
cost solution to start involving DERs in the voltage control of existing distri-
bution networks. Unfortunately, the absence of coordination may introduce
technical problems related to the interaction among controllers or even sys-
tem instability.

In the communication-based control architectures, there are numerous
advantages in coordinating the local actions of DERs through the data col-
lected by smart meters. However, this represents a solution that requires
multiple and costly investments in existing distribution systems [17].
The architectures based on communication [18] can in turn be classified into:
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CHAPTER 2. CONTROL STRATEGIES OF SMART GRIDS

Figure 2.1: Local Control

• Centralized,

• Distributed,

• Decentralized.

The different characteristics of the three architectures in terms of optimal
control results and of investment costs for the communication infrastructures
are outlined in the following Sections.

2.1 Centralized control architecture

In a centralized architecture Fig. 2.2, a central control unit, typically located
at the substation level, firstly solves a system voltage optimization control
problem on the basis of the measurements collected from all the nodes/de-
vices of the network; then, it sends the optimal set-points back to the local
controller of both DERs and conventional Volt/Var devices. This approach
yields the optimal solution but its implementation is very expensive requiring
a large communication infrastructure with adequate bandwidth to exchange
information quickly and accurately.

2.2 Distributed control architecture

In a distributed architecture Fig. 2.3, the controllers of both DERs and
conventional Volt/Var devices use measurements at PCC to achieve local
voltage regulation as in a local control, but they also exchange information
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Figure 2.2: Centralized control architecture

Figure 2.3: Distributed control architecture

with the controllers of the neighboring nodes for coordination purposes. This
approach aims at overcoming the technical problems of the local control ar-
chitecture, while limiting the investments for the communication infrastruc-
ture.

2.3 Decentralized control architecture

In a decentralized architecture Fig. 2.4, the distribution system is usually
partitioned into Voltage Control Zones (VCZs). Referring to sensitivity ma-
trices of nodal voltages with respect to active and reactive power injections
by DERs, the VCZs are defined so that each VCZ contains nodes that are
significantly coupled among each other and are weakly coupled with the
nodes belonging to other VCZs; in the ’electric center’ of a VCZ is placed
the pilot node (PN), whose voltage variation best represents the variation of
the voltage in the VCZ [19], [20]. In each VCZ a centralized zone controller
is present which is located at the PNs, whereas the coordination among the
various zone controllers is obtained by a distributed control. This approach
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Figure 2.4: Decentralized Control

guarantees the optimal solution for each VCZ and requires a communica-
tion infrastructure lighter than the centralized control, expecially if a large
number of DERs and Volt/Var devices is present.
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Part II

Distribution System Modeling
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Chapter 3

Linear modelling of the
distribution system

In this part of the Thesis, attention is focused on linear modelling of the
distribution system.
In the previous part, it has been evidenced that new voltage regulation sys-
tems with innovative control architectures are going to be implemented in
distribution systems. In particular, a large number of DERs and Volt/Var
control devices are expected to be connected to the networks and to be ad-
equately controlled and coordinated. To develop the new voltage control
architectures, the interaction among the various DERs and devices must be
adequately analysed and modelled: it is the focus of this second part of the
Thesis in view of the tackling voltage regulation problem in the third part.
As well known, power systems steady-state operation is typically modelled
by the non-linear power flow equations. Then, exploiting the radial configu-
ration typically adopted in distribution network operation, in this part of the
Thesis some simple linear models available in literature for the distribution
system operation are analyzed and extended to improve their accuracy.

3.1 Electric Equivalent Circuit of the Distribution
System

Consider, as an example but without loss of generality, the LV distribution
system shown in the Fig. 3.1.
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CHAPTER 3. LINEAR MODELLING OF THE DISTRIBUTION SYSTEM

Figure 3.1: Low Voltage Distribution System with DERs

The system is composed of a MV/LV substation with m departing feed-
ers from the LV busbar in the substation (node 0); the generic h− th feeder
is composed of nh branches and at each branch uncontrolled loads and/or
DERs are connected.

Fig. 3.2 represents the electrical circuit of the MV/LV power supply sys-
tem in balanced operating conditions (unbalanced modelling is more complex
and left to future research).

Figure 3.2: Electric equivalent circuit of the MV/LV Substation

Two electrical parameters characterize the equivalent circuit:

• the resistance Rtr of the MV/LV transformer;

• the equivalent impedance Xeq = Xtr +Xsc, where Xtr is the reactance

14



CHAPTER 3. LINEAR MODELLING OF THE DISTRIBUTION SYSTEM

of the transformer and Xsc the short-circuit impedance of the MV
node.

Three electric variables characterize the model at the MV node:

• the amplitude of the no-load voltage VMV of the node, which is assumed
to be assigned, representing the slack bus of the system;

• the input active power PMV ;

• the input reactive power QMV .

Similarly the MV/LV transformer output is characterized by three elec-
trical variables:

• the LV busbar voltage amplitude Vtr;

• the outgoing active power Ptr;

• the outgoing reactive power Qtr.

In Fig. 3.3, in a similar way, it is represented by the electric circuit of
the generic j − th branch of the LV distribution system.

Figure 3.3: Electric equivalent circuit of the j − th branch

Two electrical parameters characterize the branch equivalent circuit:

• the resistance Rj ;

• the reactance Xj .

Three electrical variables characterize the branch at the sending node
j − 1:

• the nodal voltage amplitude Vj−1;
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• the incoming active power Pj−1;

• the incoming reactive power Qj−1.

Similarly, three electrical variables characterize the branch at the receiv-
ing node j,

• the nodal voltage amplitude Vj ;

• the outgoing active power Pj ;

• the outgoing reactive power Qj ;

Furthermore, two external variables or “enforcements” are included at
the receiving node j, which are the active shunt power PS,j and the shunt
reactive power QS,j defined as:

PS,j = Pder,j − PL,j

QS,j = Qder,j −QL,j

being Pder,j and Qder,j , respectively, the active and reactive powers injected
by the DER connected to the j − th node, and PL,j and QL,j , respectively,
the active and reactive powers absorbed by the uncontrolled load connected
to the j − th node.

The linear model of the LV distribution system can be obtained through
the linearization of the load flow equations of the branches associated with
the components of the LV distribution system represented in Fig 3.2 and
Fig. 3.3. Then, imposing both boundary and coupling conditions, a closed-
form solution of linearized DistFlow equations is obtained through the use
of the chain rule [21]. Such a closed form represents the linear model of the
distribution system with DER, and is expressed in terms of variations in the
electrical variables of the LV networks (with respect to an initial operating
point) as linear functions of DER injections. The construction occurs step
by step: first, the model of a generic branch and a feeder composed of
several branches is developed; then, the MT/BT model the power system is
introduced and combined with the models of the power supplies, obtaining
the model of the entire LV distribution system [21].
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3.2 Branch Model

3.2.1 Exact non-linear model

The model of the j− th branch, Fig. 3.3, is described by the well-known dis-
tribution load flow (DistFlow) equations for the steady-state operation [22]



Pj = Pj−1 −
Rj(P

2
j−1 +Q2

j−1)

V 2
j−1

+ Psj

Qj = Qj−1 −
Xj(P

2
j−1 +Q2

j−1)

V 2
j−1

+Qsj

V 2
j = V 2

j−1 − 2(RjPj−1 +XjQj−1) +
(R2

j +X2
j )(P

2
j−1 +Q2

j−1)

V 2
j−1

(3.1)

These equations overcome the limits of the classical power flow formu-
lation based on non-linear equations written for each node of the network
(formulation used at the transmission level), but are valid only in the case of
radial topology of the distribution network because voltage phases are not
included in the representation.

3.2.2 Linearized model

To simplify the study it is possible to linearized the equations (3.1) around
an initial operating point.

Let the vector of nodal variables xj be defined as

xj = (Pj , Qj , V
2
j )

t

and the Jacobian matrix, which realizes the partial derivatives with respect
to the three variables, be

Jj =

[
δxj

δPj−1

δxj
δQj−1

δxj
δV 2

j−1

]
(3.2)

The linearization (3.1) of the equations yields the following branch model

∆xj = Jj∆xj−1 + (∆Psj ,∆Qsj , 0)
t (3.3)

with
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• ∆xj is the variation of the electrical variables at the receiving node
xj with respect to the initial operating point x0j as a function of the
vector

∆xj = xj − x0j

• ∆xj−1 is the variation of the electrical variables at the supplying node
xj−1, with respect to the initial operating point x0j

∆xj−1 = xj−1 − x0j−1

• Jj is the Jacobian matrix (3.2) evaluated in the initial operating point,

• ∆PSj ,∆QSj are the variations of the injections of the shunt active and
reactive powers at the receiving node.

If the initial operating condition is characterized by the absence of DERs
injections, then ∆PSj ,∆QSj are equal to the values Pder,j , Qder,j of the DERs
active and reactive power injections at the receiving node, which are consid-
ered to be assigned enforcements.

3.2.3 Structural linear model

A particular case is the one in which the initial operating point is charac-
terized not only by null powers injected by all the DERs connected to the
LV distribution system but also by null powers absorbed by the uncontrolled
loads. Then, all active and reactive power flows are null along the branches
and the so-called LinDistFlow model is derived [23]. In particular the Jaco-
bian matrix (3.2) reduces to the form

Jj =

 1 0 0

0 1 0

−2Rj −2Xj 1


which we refer to as "structural" model, because it does not depend on the
initial values of electric variables, because the power flows are all null and,
consequently, no voltage drop is present and voltages are all equal to the
slack bus voltage. In this model, active and reactive losses are neglected and
voltage drops approximated to linearly dependend on active and reactive
power flows
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3.2.4 Structural linear model with losses

To account for losses, which are neglected in the previous LinDistFlow or
structural modeling, are integrated by adding an approximated term. The
Jacobian matrix (3.2) is approximated to the sum of a structural part (3.4),
hereinafter indicated with the superscript s, and a part including the losses,
hereinafter indicated with the superscript loss, that is

Jj = Js
j + J loss

j

with

Js
j =

 1 0 0

0 1 0

−2Rj −2Xj 1



J loss
j =


−2Rj

Pj−1

V 2
j−1

|0 Rj
Qj−1

V 2
j−1

|0 0

−2Xj
Pj−1

V 2
j−1

|0 −2Xj
Qj−1

V 2
j−1

|0 0

0 0 0


Defining the quantities αj

p and αj
q, representative of a weight linked to

losses
αj
p =

Pj−1

V 2
j−1

|0

αj
q =

Qj−1

V 2
j−1

|0

J loss
j is written in compact form

J loss
j =

−2Rjα
j
p −2Rjα

j
q 0

−2Xjα
j
p −2Xjα

j
q 0

0 0 0


In this model, the term of the voltage that is neglected is related to the

last term in the voltage expression, see (3.1). It is reasonable because it is a
term depending on the square value of the series impedance of the branch.
Since series impedances value in per unit is usually of the order of 10−2, the
neglected term is of the order of 10−4. Moreover, the dependency of the
active and reactive power flows on the voltage variations is also neglected
due to the limited variations of voltages. In fact these terms are related to
the product of series impedances times the voltage variations, which in turn
should result to be of the order of 10−4.
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3.3 Feeder Model

3.3.1 Structural linear model

The electric equivalent circuit of the h-th feeder of the LV distribution system
is composed of a series of nh branches. Then, the model of the feeder is
composed of nh equations of type (3.3):

Figure 3.4: Electric Equivalent Circuit of the h-th Feeder

Consequently, the feeder model is composed of nh equations of this type

∆xj = Jj∆xj−1 + (∆Psj ,∆Qsj , 0)
t

with j = 0, ..., nh.

Applying the chain rule to this equation

∆xj = Mj∆x0 +

j∑
k=1

Njk(∆Psk ,∆Qsk , 0)
t (3.4)

Defining the matrices Mj

Mj =

j−1∐
l=0

Jj−l =


1 0 0

0 1 0

−2
j∑

l=1

Rl −2
j∑

l=1

Xl 1


The values of matrix Njk depend on j and k:

Njk =

j−k−1∐
l=0

Jj−l =


1 0 0

0 1 0

−2
j∑

l=k+1

Rl −2
j∑

l=k+1

Xl 1

 for k < j;
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Njk = 0 for k > j;
Njk = I for k = j.

To obtain a defined problem, three additional conditions must be as-
signed. It derived from the behavior of the feeder at its borders. In par-
ticular, the voltage amplitude at the head of the feeder is imposed by the
MV/LV supplying substation and the active and reactive powers flowing out
of the end-node of the feeders are always null. The border conditions can be
expressed in terms of variations of the electric nodal variables as

∆V0
2 = ∆Ṽ0

2

∆Pnh
= 0

∆Qnh
= 0

where ∆Ṽ0
2

is the variation of the squared voltage amplitude imposed at the
LV busbar by the MV/LV supplying substation 1.

Rewriting the equation (3.4) for j = nh and particularizing it for ∆x0 0

0

∆V 2
nh

 = Mnh

∆P0

∆Q0

∆Ṽ 2
0

+

nh∑
k=1

Njk

∆Pk
der

∆Qk
der

∆Vk
2reg


Considering the first two lines 2

[
0

0

]
=

[
∆P0

∆Q0

]
nh∑
k=1

N̄nhk

∆Pk
der

∆Qk
der

∆Vk
2reg


then

[
∆P0

∆Q0

]
= −

nh∑
k=1

N̄nhk

∆Pk
der

∆Qk
der

∆Vk
2reg

 = −
nh∑
k=1

[
1 0 0

0 1 0

]∆Pk
der

∆Qk
der

∆Vk
2reg

 = −


nh∑
k=1

∆Pk
der

nh∑
k=1

∆Qk
der


1The symbol˜indicates an assigned value.
2The symbol¯represents the 2× 2 principal minor composed of the first two rows and

first two column of a matrix.
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with Āk = −N̄nhk and ā = (0, 0)t

Then it can be written

∆x0 = −
nh∑
k=1

1 0 0

0 1 0

0 0 0


∆Pk

der

∆Qk
der

∆Vk
2reg

+

00
1

∆Ṽ0
2

consequentially

∆x0 =


−

nh∑
k=1

∆Pk
der

−
nh∑
k=1

∆Qk
der

∆Ṽ 2
0


Substituting this expression in the initial equation, obtain

∆xj = Mj


−

nh∑
k=1

∆Pk
der

−
nh∑
k=1

∆Qk
der

∆Ṽ0
2

+

nh∑
k=1

Njk

∆Pk
der

∆Qk
der

∆Vk
2reg



by doing a series of steps, can write that ∆xj is equal to

∆xj = −
nh∑
k=1

Mj

1 0 0

0 1 0

0 0 0


∆Pk

der

∆Qk
der

∆Vk
2reg

+Mja∆Ṽ0
2
+

nh∑
k=1

Njk

∆Pk
der

∆Qk
der

∆Vk
2reg


By grouping the terms

∆xj =

nh∑
k=1

(Njk −Mj

1 0 0

0 1 0

0 0 0

)
∆Pk

der

∆Qk
der

∆Vk
2reg

+Mja∆Ṽ 2
0

It can re-succeed the representative equation of the lateral model, refer-
ring to the sum of several branches, with P der = 0 and Qder = 0 at the
end

∆xj =

nh∑
k=1

Bjk

∆Pk
der

∆Qk
der

∆Vk
2reg

+ bj∆Ṽ 2
0
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with

Bjk = Njk −Mj

1 0 0

0 1 0

0 0 0



bj = Mja =


1 0 0

0 1 0

−2
j∑

l=1

Rl −2
j∑

l=1

Xl 1


00
1

 =

00
1

 = a = b0

In the equation, the vectors ∆xj of the variation of the electric variables
at the receiving node of each branch belonging to the feeder are expressed
as a function of

• The vectors (∆Psj ,∆Qsj , 0)
t of the DERs active and reactive power

injections in all the nodes of the feeder through the matrices Bjk;

• The variation ∆V0
2 of the squared voltage amplitude at the LV busbar

of the supplying substation through the vector bj .

It is interesting to to analyze what the matrix Bjk indicates whose value
is different whose value is different depending on whether k > j or k ≤ j.

In the first case k > j the injection of ∆P der and ∆Qder reduces Pj and
Qj by the same amount up to node j. Any voltage regulation in node k has
no effect upstream. This phenomenon is best described by considering the
expression of Bjk

Bjk =


−1 0 0

0 −1 0

2
j∑

l=1

Rl 2
j∑

l=1

Xl 0

 j = 0, ..., nh k = 1, ..., nh

In the second case k ≤ jthe injection of ∆P der and ∆Qder does not alter
Pj and Qj . the voltage drop is reduced to knot k. Any tension adjustment
in node k has no effect on Pj and Qj . This phenomenon is best described
by considering the expression of Bjk
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Bjk =


0 0 0

0 0 0

2
k∑

l=1

Rl 2
k∑

l=1

Xl 1

 j = 0, ..., nh k = 1, ..., nh.

3.3.2 Structural linear model with losses

In the modeling in the previous paragraph, only structural Jacobian matrices
have been considered and losses were neglected.

A similar procedure can be followed for the linearized feeder model also
in this case have a structural part, indicated below with the superscript s

and one with inclusive of losses, indicated below with the superscript loss.

Keeping in mind the approximations that have been introduced in the
branch structural model with losses, also in the following the procedure is
applied neglecting the terms in which series impedances appear with a sec-
ond or higher order.

Then, let us rewrite the feeder model and start from the definition of the
matrices Jj , Mj and Njk.
The Jacobian realizes by a structural component and a loss component, as
follows

Jj = Js
j + J loss

j =

 1 0 0

0 1 0

−2Rj −2Xj 1

+


−2Rj

Pj−1

V 2
j−1

|0 −2Rj
Qj−1

V 2
j−1

|0 0

−2Xj
Pj−1

V 2
j−1

|0 −2Xj
Qj−1

V 2
j−1

|0 0

0 0 0


The matrices Mj result to be

Mj = M s
j +M loss

j =

j−1∐
l=0

Jj−l =

j−1∐
l=0

(Js
j−l + J loss

j−l ) =

=


1 0 0

0 1 0

−2
j∑

l=1

Rl −2
j∑

l=1

Xl 1

+


−2

j∑
l=1

Rl
Pl−1

V 2
l−1

|0 −2
j∑

l=1

Rl
Ql−1

V 2
l−1

|0 0

−2
j∑

l=1

Xl
Pl−1

V 2
l−1

|0 −2
j∑

l=1

Xl
Ql−1

V 2
l−1

|0 0

0 0 0
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whereas matrices Njk for all k < j

Njk = N s
jk +N loss

jk =

j−k−1∐
l=0

Jj−l =

j−k−1∐
l=0

(Js
j−l + J loss

j−l ) =

=


1 0 0

0 1 0

−2
j∑

l=k+1

Rl −2
j∑

l=k+1

Xl 1

+

−2

j∑
l=k+1

Rl
Pl−1

V 2
l−1

|0 −2
j∑

l=k+1

Rl
Ql−1

V 2
l−1

|0 0

−2
j∑

l=k+1

Xl
Pl−1

V 2
l−1

|0 −2
j∑

l=k+1

Xl
Ql−1

V 2
l−1

|0 0

0 0 0



To simplify the notation, the following quantities are defined

βjk
Rp

=

j∑
l=k+1

Rl
Pl−1

V 2
l−1

βjk
Rq

=

j∑
l=k+1

Rl
Ql−1

V 2
l−1

βjk
Xp

=

j∑
l=k+1

Xl
Pl−1

V 2
l−1

βjk
Xq

=

j∑
l=k+1

Xl
Ql−1

V 2
l−1

The specific case in which k = 0 is also considered

βj0
Rp

=

j∑
l=1

Rl
Pl−1

V 2
l−1

βj0
Rq

=

j∑
l=1

Rl
Ql−1

V 2
l−1

βj0
Xp

=

j∑
l=1

Xl
Pl−1

V 2
l−1

βj0
Xq

=

j∑
l=1

Xl
Ql−1

V 2
l−1

With this notation, let us proceed with the writing of Mj

Mj = M s
j +M loss

j =

j−1∐
l=0

Jj−l =

j−1∐
l=0

(Js
j−l + J loss

j−l ) =
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=


1 0 0

0 1 0

−2
j∑

l=1

Rl −2
j∑

l=1

Xl 1

+

−2βj0
Rp

−2βj0
Rq

0

−2βj0
Xp

−2βj0
Xq

0

0 0 0

 =

=


1 0 0

0 1 0

−2
j∑

l=1

Rl −2
j∑

l=1

Xl 1

− 2

β
j0
Rp

βj0
Rq

0

βj0
Xp

βj0
Xq

0

0 0 0

 =

= M s
j − 2Bj0

Let us instead consider Njk. Remember that the value assumed by this
matrix differs depending on j and k. In particular if j = k then Njk = I, if
instead j < k have Njk = 0, if j > k the matrix must be constructed and
the steps are defined below

Njk = N s
jk

+N loss
jk

=

j−k−1∐
l=0

Jj−l =

j−k−1∐
l=0

(Js
j−l + J loss

j−l ) =

=


1 0 0

0 1 0

−2
j∑

l=k+1

Rl −2
j∑

l=k+1

Xl 1

+

−2βjk
Rp

−2βjk
Rq

0

−2βjk
Xp

−2βjk
Xq

0

0 0 0

 =

=


1 0 0

0 1 0

−2
j∑

l=k+1

Rl −2
j∑

l=k+1

Xl 1

− 2

β
jk
Rp

βjk
Rq

0

βjk
Xp

βjk
Xq

0

0 0 0

 =

= N s
jk

− 2Bjk

Now that have rewritten these matrices, let’s replace them and find ∆xj

∆xj = Mj∆x0 +

nh∑
k=1

Njk∆fk =

= (M s
j∆x0 +M loss

j ∆x0) +

nh∑
k=1

(N s
jk
∆fk +N loss

jk
∆fk)

wher ∆fk represents the forcing. As done previously, to find ∆xj you
need to find ∆x0. Then particularizes ∆xj for j = nh and only the first two
lines are considered
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 0

0

∆V 2
nh

 = (M s
nh

+M loss
nh

)

∆P0

∆Q0

∆Ṽ 2
0

+

nh∑
k=1

(N s
nhk

+N loss
nhk

)∆fk

so [
0

0

]
= (M̄ s

nh
+ M̄ loss

nh
)

[
∆P0

∆Q0

]
+

nh∑
k=1

(N̄ s
nhk

+ N̄ loss
nhk

)∆fk

From this last equation obtain ∆x0

∆x0 =

[
∆P0

∆Q0

]
= −(M̄ s

nh
+ M̄ loss

nh
)−1[

nh∑
k=1

(N̄ s
nhk

+ N̄ loss
nhk

)∆fk]

Now look for the value of M̄−1
nh

M̄nh
= M̄ s

nh + M̄ loss
nh

=

[
1− 2βnh0

Rp
−2βnh0

Rq

−2βnh0
Xp

1− 2βnh0
Xq

]
= I − 2B̄nh0

To be able to invert the matrix, need to look for the determinant (ob-
tained by neglecting higher order terms)

det(M̄nh
) = 1− 2(βnh0

Rp
+ βnh0

Xq
)

Consequently

M̄−1
nh

=
1

det(M̄nh
)
M̄∗

nh
=

=
1

1− 2(βnh0
Rp

+ βnh0
Xq

)

[
1− 2βnh0

Rp
2βnh0

Rq

2βnh0
Xp

1− 2βnh0
Xq

]
=

=

[
1 0

0 1

]
+

2

det(M̄nh)

[
βnh0
Rp

βnh0
Rq

βnh0
Xp

βnh0
Xq

]
=

= I +
2

det(M̄nh
)
B̄nh0

Start again from ∆x0, and rewrite this expression by replacing the ob-
tained values

∆x0 =

[
∆P0

∆Q0

]
= −(M̄ s

nh + M̄ loss
nh

)−1[

nh∑
k=1

(N̄ s
nhk

+ N̄ loss
nhk

)∆fk] =
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= −(I +
2

det(M̄nh
)
B̄nh0)[

nh∑
k=1

(I − 2B̄nhk)∆fk] =

= −(I +
2

det(M̄nh
)
B̄nh0)[

nh∑
k=1

I∆fk −
nh∑
k=1

2B̄nhk∆fk] =

= −(I)(

nh∑
k=1

I∆fk)− (I)(−2

nh∑
k=1

B̄nhk∆fk)−

−(
2

det(M̄nh)
B̄nh0)(

nh∑
k=1

I∆fk)− (
2

det(M̄nh
)
B̄nh0)(−

nh∑
k=1

2B̄nhk)∆fk) =

= −
nh∑
k=1

∆fk+

nh∑
k=1

2B̄nhk∆fk−
nh∑
k=1

2

det(M̄nh)
B̄nh0∆fk+

nh∑
k=1

4

det(M̄nh
)
B̄nh0B̄nhk∆fk =

= −
nh∑
k=1

I∆fk +

nh∑
k=1

(2B̄nhk − 2

det(M̄nh
)
B̄nh0 +

4

det(M̄nh
)
B̄nh0B̄nhk)∆fk

Two matrices are now defined: S̄ the structural part and L̄nhk the losses
part

S̄ = I

L̄nhk = (2B̄nhk − 2

det(M̄nh
)
B̄nh0 +

4

det(M̄nh
)
B̄nh0B̄nhk)

Therefore, written in a concise manner

∆x0 =

∆P0

∆Q0

∆V 2
0

 = −
nh∑
k=1

S∆fk +

nh∑
k=1

Lnhk∆fk +

00
1

∆Ṽ 2
0

Found ∆x0, replace it in ∆xj and obtain

∆xj = Mj∆x0 +

nh∑
k=1

Njk∆fk =

= (M s
j∆x0 +M loss

j ∆x0) +

nh∑
k=1

(N s
jk
∆fk +N loss

jk
∆fk) =

= (M s
j +M loss

j )−
nh∑
k=1

S∆fk+

nh∑
k=1

Lnhk∆fk+

00
1

∆Ṽ 2
0 +(N s

jk
+N loss

jk
)∆fk =
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= −
nh∑
k=1

M s
j S∆fk +

nh∑
k=1

M s
jL

nhk∆fk +M s
j

00
1

∆Ṽ 2
0 −

−
nh∑
k=1

M loss
j S∆fk +

nh∑
k=1

M loss
j Lnhk∆fk +M loss

j

00
1

∆Ṽ 2
0 +

+

nh∑
k=1

N s
jk
∆fk +

nh∑
k=1

N loss
jk

∆fk

A series of steps are carried out to then group the terms without the
losses and with

∆xj =

nh∑
k=1

(−M s
j S +N s

jk +M s
jL

nhk −M loss
j S −M loss

j Lnhk +N loss
jk

)∆fk +

+(M s
j

00
1

+M loss
j

00
1

)∆Ṽ 2
0

define

Bjk = Bs
jk

+Bloss
jk = (−M s

j S +N s
jk
) + (M s

jL
nhk −M loss

j S +M loss
j Lnhk +N loss

jk
)

bj = bsj + blossj = (M s
j

00
1

) + (M loss
j

00
1

)
Therefore rewrite ∆xj with the same formulation already used but in

this case have the integration of the losses

∆xj = ∆xsj +∆xlossj =

nh∑
k=1

Bs
jk
∆fk + bsj∆V̄ 2

0 +

nh∑
k=1

Bloss
jk

∆fk + blossj ∆V̄ 2
0

Also in this case the expressions of Bs
jk

and of Bloss
jk can be easily inter-

preted and constructed similarly to what has been explained at the end of
the previous section for Bjk in the case of structural linear model.
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3.4 Lateral Model

For the sake of conciseness, the Lateral model is reported only for the case
of the structural linear model; the same procedure can be followed also in
the case that losses were considered.

3.4.1 Structural linear model

To specify the model feeder equations for each one of the m feeders, a su-
perscript referring to the feeder number is added to the variables, matrices
and vectors.

Then, the model equations for the h− th feeders becomes

∆xh,j =

nh∑
k=1

Bh,jk∆xfh,k + b0∆Ṽ 2
h,0 (3.5)

Where h represents the generic lateral and is h = 1, ..., L.
The external forcing of the node k of the lateral h is defined as follows

∆xfh,k =

∆P inj
h,k

∆Qinj
h,k

∆V ext
h,k


The main feeder, on the other hand, is indicated with a subscript h = 0

∆x0,j =

n0∑
k=1

B0,jk∆xf0,k + b0∆Ṽ 2
0,0 (3.6)

To get a defined problem, as also done for the feeder, it is necessary to
assign three additional conditions. They are derived from the behavior of
the feeder at its borders. In particular, the magnitude of the voltage at the
head of the power supply is imposed by the MV/LV power supply cabin and
the active and reactive powers output from the terminal node of the feeders
which however in this case are not zero.
Boundary conditions can be expressed in terms of variations in electricity
nodal variables such as

Ph,0 = −
nh∑
k=1

P inj
h,k , Qh,0 = −

nh∑
k=1

Qinj
h,k (3.7)

30



CHAPTER 3. LINEAR MODELLING OF THE DISTRIBUTION SYSTEM

The variation of the squared voltage amplitude imposed at the LV busbar
by the MV/LV supplying substation, which is equal to

∆Ṽ 2
h,0 = ∆V 2

0,n0
∀h = 1, ..., L (3.8)

Equation (3.5) is correct except for imposing (3.8) while for (3.7) it is
necessary to impose in the last node the active and reactive powers not
equal to zero but to the sum of the starting powers at the laterals. Rewrite
the maim feeder by imposing the (3.7), and in (3.7) rewrite Ph,0 and Qh,0

obtained from (3.5) for j = 0

∆xh,0 =

nh∑
k=1

Bh,0k∆xfh,k + b0∆Ṽ 2
h,0

with

Bh,0k =

−1 0 0

0 −1 0

0 0 0

 and b0 =

00
1


As a result it is obtained

Ph,0 = −
nh∑
k=1

P inj
h,k , and Qh,0 = −

nh∑
k=1

Qinj
h,k

Making the substitution in (3.7)

P0,n0 = −
L∑

h=1

nh∑
k=1

P inj
h,k , and Q0,n0 = −

L∑
h=1

nh∑
k=1

Qinj
h,k

These on-board conditions apply as in the case of the single feeder

[
−1 0 0

0 −1 0

]
L∑

h=1

nh∑
k=1

∆xfh,k =

[
∆P0,0

∆Q0,0

]
+

n0∑
k=1

N̄n0,k∆xf0,k

with

N̄n0,k =

[
1 0 0

0 1 0

]
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therefore[
∆P0,0

∆Q0,0

]
= −

[
1 0 0

0 1 0

]
∆xf0,k +

[
−1 0 0

0 −1 0

]
L∑

h=1

nh∑
k=1

∆xfh,k

In this way, obtain the equation[
∆P0,0

∆Q0,0

]
=

[
−1 0 0

0 −1 0

]
L∑

h=0

nh∑
k=1

∆xfh,k

As done for the single feeder, replace to obtain ∆x0,0

∆x0,0 = −

1 0 0

0 1 0

0 0 0

 L∑
h=0

nh∑
k=1

∆xfh,k +

00
1

∆Ṽ 2
0,0

Therefore find the ∆x0,j in the main feeder

∆x0,j = −M0,j

1 0 0

0 1 0

0 0 0

 L∑
h=0

nh∑
k=1

∆xfh,k +

00
1

∆Ṽ 2
0,0 +

n0∑
k=1

N0,jk∆xf0,k =

= −


1 0 0

0 1 0

−2
j∑

l=1

Rl −2
j∑

l=1

Xl 0


L∑

h=0

nh∑
k=1

∆xfh,k +

00
1

∆Ṽ 2
0,0 +

n0∑
k=1

N0,jk∆xf0,k =

= −M̄0,j

L∑
h=1

nh∑
k=1

∆xfh,k +

00
1

∆Ṽ 2
0,0 +

nh∑
k=1

(
−M̄0,j +N0,jk

)
∆xf0,k

Define

B0,jn0
= −M̄0,j for k > j and B0,jk =

(
−M̄0,j +N0,jk

)
The variable ∆x0 can be written in the form

∆x0,j = B0,jn0

L∑
h=1

nh∑
k=1

∆xfh,k +

n0∑
k=1

B0,jk∆xf0,k +

00
1

∆Ṽ 2
0,0 (3.9)

Now,the part on the main feeder concluded, imposed (3.8) in the (3.5).
It particularize (3.9) for j = n0 in order to obtain ∆Ṽ 2

0,n0
which appears

in (3.8)
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∆x0,n0 = B0,jn0

L∑
h=1

nh∑
k=1

∆xfh,k +

n0∑
k=1

B0,n0k
∆xf0,k +

00
1

∆Ṽ 2
0,0

The third line is rewritten using the subscript p instead of h, which
represents the right side of (3.8).

∆V 2
0,n0

=

[
2

n0∑
l=1

Rl 2
n0∑
l=1

Xl 0

]
L∑

p=1

np∑
k=1

∆xfp,k + (3.10)

+
n0∑
k=1

[
2

n0∑
l=1

Rl 2
n0∑
l=1

Xl 1

]
∆xf0,k +∆Ṽ 2

0,0

Substituting the (3.8) in the (3.5)

∆xh,j =

nh∑
k=1

Bh,jk∆xfh,k +

00
1

∆V 2
0,n0

=

=

nh∑
k=1

Bh,jk∆xfh,k +

00
1

[2 n0∑
l=1

Rl 2
n0∑
l=1

Xl 0

] L∑
p=1

np∑
k=1

∆xfp,k +

+

n0∑
k=1

b0

[
2

k∑
l=1

Rl 2
k∑

l=1

Xl 1

]
∆xf0,k + b0∆Ṽ 2

0,0 =

=

nh∑
k=1

Bh,jk∆xfh,k +


0 0 0

0 0 0

2
n0∑
l=1

Rl 2
n0∑
l=1

Xl 0


L∑

p=1

np∑
k=1

∆xfp,k +

+

n0∑
k=1


0 0 0

0 0 0

2
k∑

l=1

Rl 2
k∑

l=1

Xl 1

∆xf0,k + b0∆Ṽ 2
0,0 =
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=

nh∑
k=1

Bh,jk∆xfh,k


0 0 0

0 0 0

2
n0∑
l=1

Rl 2
n0∑
l=1

Xl 0


L∑

p=1̸=h

np∑
k=1

∆xfp,k +

nh∑
k=1


0 0 0

0 0 0

2
n0∑
l=1

Rl 2
n0∑
l=1

Xl 0

∆xfh,k +

n0∑
k=1


0 0 0

0 0 0

2
k∑

l=1

Rl 2
k∑

l=1

Xl 1

∆xf0,k +

b0∆Ṽ 2
0,0

Define

B̄0,n0 =


0 0 0

0 0 0

2
n0∑
l=1

Rl 2
n0∑
l=1

Xl 0


and

B0,n0k =


0 0 0

0 0 0

2
k∑

l=1

Rl 2
k∑

l=1

Xl 1


After this series of steps the lateral model is obtained

∆xh,j = B0,n0 +
L∑

p=1̸=h

np∑
k=1

∆xfp,k +

n0∑
k=1

B0,n0k∆xf0,k + b0∆Ṽ 2
0,0 +

+

nh∑
k=1

(Bh,jk +B0,n0)∆xfh,k (3.11)

On the first two rows of equation (3.11) there are non-zero values that
are equal to −1 only for Bh,jk , i.e. for those DERs present on lateral h

considered downstream of branch j.
On the third lines however, have an equivalent model of a single feeder

made from the main plus the lateral h, adding all the active and reactive
power forcing injected by the DER into the node (0, n0).

It is possible construct the matrices Bh,jk by referring to the equivalent
model for branch (h, j) and the (3.9) for the main feeder, it refers to the
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equivalent model on which the data is construct the B0,jk as in the case of a
single feeder.

Therefore, the Linearized Lateral Model can also be constructed in a
similar way by adding the losses.

3.5 Structural Load Flow Algorithm

An efficient algorithm is presented to evaluate the sensitivity matrices of the
active and reactive power flows and of the voltages to DERs injections and
to the action of voltage control devices. For the sake of conciseness, the
algorithm is presented with reference to the structural linear model of the
distribution system, but can easily be extended to account for losses in an
approximated way as described in the previous sections.
The code used is present in each step in the Appendix.

The general block diagram is reported in Fig. 3.5 and in the reminder
each step of the procedure is analysed.

Ini!aliza!ons

Calculates the Sensi!vity Matrices of

the Powers to the Injected Powers

Calculates the Sensi!vity Matrices of

the Voltages to the Injected Powers

Calculates the Sensi!vity Matrices of

the Voltages to the Voltage Varia!ons

Descrip!on of the Network Topology

1

3

2

4

5

Figure 3.5: Flow Chart Algorithm
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For the sake of clarity but without loss of generality, reference is made
to the distribution network represented in Fig. 3.1. In Fig. 3.6 for better un-
derstanding, a branch, a feeder, and a lateral are highlighted, respectively,
in yellow, blue and red colors.

Figure 3.6: Highlighted Network Division

3.5.1 Initializations

The smallest element of the LV distribution network is precisely consider:
the branch. The algorithm needs the following initializations: the definitions
of the slack node, the number of branches, then the starting and arrival node
of the branch and finally the resistance and reactance of each branch.

3.5.2 Description of the Network Topology

A fundamental step to arrive at the construction of the matrices is the def-
inition of the network topology. In particular for each branch a path must
be defined, that is, it is necessary to define the sequence of branches to go
upstream from the branch in question to the slack node. Therefore, to de-
fine the path of each branch, the path is evaluated backwards by finding
the branch that presents as ending node the initial node of the branch un-
der consideration. In Fig. 3.7, there is a graphical representation of a path
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chosen as an example.

Figure 3.7: Path for the branch 3− 4

So to go from branch 4 to the slack, in this example represented by branch
1, this path highlighted in yellow is created. The algorithm, therefore, iterate
this reasoning for each branch of the network.

Therefore, in order to define the path for each branch, the path backwards
to the slack is carried out. It considers the starting node of the branch and
sees for which other branches it is the arrival node. The iteration ends when
slack is reached. Sequences are therefore obtained, in which the branch itself
is present first and then all those upstream up to the CS (fixed to slack).

3.5.3 Evaluation of the Sensitivity Matrices of the Powers to
the Injected Powers

Once the paths have been defined, the algorithm continues by calculating
the sensitivity matrices of the power flows to the powers injections.

Let’s assume, as shown in Fig. 3.8, that the DER2 injects power (active
or reactive, as the reasoning is equivalent).

If there is an active power injection in a branch of the network, the power
that flows in the branch itself and also in the branches that belong to the
path of the considered branch, upstream to the slack node. Assuming there
are no losses, a power injection of 1 p.u leads to a reduction (by convection)
of 1 p.u in the power on these branches.
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Figure 3.8: Graphic Example n. 1 for the Calculation of Matrix TPder
P

Therefore, to build the matrix, the value -1 inserted in correspondence
with all the branches upstream of the one where the injection took place.
The other branches, on the contrary, are not affected by the power injection
and therefore have a null value.
The construction occurs in an identical manner in the case of a reactive
power injection.

3.5.4 Evaluation of the Sensitivity Matrices of the Voltages
to the Injected Powers

To define the construction of the voltage matrix with respect to power injec-
tions, active or reactive,the reasoning is different. For example, an injection
of power into the branch is assumed, as in Fig. 3.8.

The voltage drop at that point equal to the sum of the resistances of the
branches present in the path times 2 and times the ∆P . the reasoning is
identical in the case of reactive power injection but the sum of the reactances
of the branches on the path is considered.

However, the remaining values of the matrix are not zero. Therefore,
by injecting power into a branch, do not have variations in active and reac-
tive power in the branches not belonging to the path, but certainly have a
variation in the voltage for these branches. The algorithm then define which
branches are in common and replace, for all subsequent branches, the voltage
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sensitivity coefficients of the last branch in common.
At this point, we have a value for all the elements of the path matrix.

Figure 3.9: Graphic Example n. 2 for the Calculation of Matrix TPder
V and

TQder
V

Therefore referring to the Fig. 3.9, the power injection of DER2 not
change in power on branch 8 but, naturally, there change in voltage. There-
fore the algorithm define for branches 5,6,7 and 8, the voltage sensitivity
coefficient of branch 4 being the branch in common with the path.

3.5.5 Evaluation of the Sensitivity Matrix of the Voltages to
the Voltage Regulators action

At this point calculate the sensitivity matrices of the voltages to the VRs.
It is assumed that have the VRs that provides a voltage step in the 24th

branch, in Fig. 3.10.
The steps of the algorithm build the matrix composed of unitary values

for the branches whose path include the branch in question (on green line)
and null values for the remaining branches.
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Figure 3.10: Graphic Example for the Calculation of Matrix TVRT
V

Appendix

Structural Load Flow Algorithm
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Part III

The voltage optimization
problem in smart grids
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Chapter 4

Decentralized Voltage
Optimization Problem

The basic voltage optimization problem is expressed in a centralized form
and it is taken as a starting point for moving to the decentralized formula-
tions.

The centralized Voltage Optimization Problem (VOP) minimizes the
voltage deviations from their reference values; the equality constraints are
the PF equations of the network; the inequality constraints are the limits
of the nodal voltages and of the DG reactive powers, yielding the classical
optimal reactive power flow (ORPF) problem:

min
Qk1

,...,QkNDG

N∑
i=1

(V 2
i − V 2

i,ref)
2

subject to (4.1)
PF equations

Vi,min ≤ Vi ≤ Vi,max i = 1, . . . , N

Qk,min ≤ Qk ≤ Qk,max k = k1, . . . , kNDG

where Vi and Vi,ref are, respectively, the nodal voltage amplitude and its refer-
ence value at the i-th node of the grid; [Vi,min, Vi,max] and [Qk,min, Qk,max] are
the admissible ranges of variation of the nodal voltage amplitudes and of the
reactive powers offered by DGs, respectively; N and NDG are the numbers of
nodes of the network and of the DGs, respectively; and {k1, . . . , kNDG

} is a
subset of {1, . . . , N} including only the nodes of the network with DGs. The
VOP (4.1) is a non-linear programming problem of large dimension which
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provides the best solution of the voltage control problem but presents possi-
ble convergence problems, due to the non linear PF equations and the large
dimension.

To reduce the complexity of the problem [24], the PF equations in (4.1)
are linearized by the method proposed in [25] or the various linear approxi-
mations proposed in literature and recalled in the previous Part II.
Let:

yT = {∆V 2
1 , . . . ,∆V 2

N}

xT = {∆Qk1 , . . . ,∆QkNdg
}

be the vectors of the variations of the nodal voltages and of the DG reactive
powers from an initial working condition, respectively. Then, (4.1) can be
written in the matrix form as:

min
x

1

2
yTy − yref

Ty

subject to (4.2)
y = Γx
ymin ≤ y ≤ ymax

xmin ≤ x ≤ xmax

where Γ is the sensitivity matrix of the nodal voltages to the DG reactive
powers; yref is the vector of the variations of the reference values; [ymin,ymax]

and [xmin,xmax] are the operating constraints of the network and DGs, re-
spectively. By using the linearized PF equations in the objective function,
(4.2) changes into

min
x

1

2
xTHx − hTx

subject to (4.3)

ymin ≤ Γx ≤ ymax

xmin ≤ x ≤ xmax

where: H = ΓTΓ and hT = yrefΓ
T. Since H is a symmetric and positive

definite matrix, the objective function is strictly convex and (4.3) presents a
global minimum. With respect to (4.1), the drawback is the approximation
of the solution whereas the benefit is the absence of convergence problem in
finding the numerical solution. Anyway, problem (4.3) is still a centralized
VOP requiring large investments.
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4.1 Decentralized VOP with ADMM

Firstly, a linear method for the steady-state analysis of distribution networks
is used to formulate a centralized voltage optimization problem of a network
partitioned into voltage control zones. Then, overlapping variables are intro-
duced and the lack of strict convexity of the objective function is handled by
adopting the iterative method of multipliers. Finally, a fully decentralized
problem is obtained by applying the alternate direction multiplier method
(ADMM); it results in a quadratic programming problem to be solved in
each area with a limited number of scalar variables to swap.

A decentralized VOP is a valid alternative to reduce the high investment
cost of the centralized solution. The first stage is to divide the distribution
network into several VCZs by a partitioning method [26], [10], [20] . For
the sake of readability, only two VCZs, indicated as V CZ1 and V CZ2, are
considered; by the way it is without loss of generality, because the results can
be extended to a larger number of VCZs. For each VCZ a PN is identified,
indicated as PN1 and PN2 [27–29]. In the following subscripts 1 and 2
specify the electrical quantities in, respectively, V CZ1 and V CZ2.

It is assumed that V CZ1 (V CZ2) is equipped with a Control Center
(C.C.) that acquires the measurement of the voltage amplitude of PN1

(PN2); then, the C.C. of V CZ1 (V CZ2) solves a zone VOP exchanging data
with the C.C. of V CZ2 (V CZ1) and, eventually, sends the set-points to the
reactive power controllers of the DGs in V CZ1(V CZ2). Such an approach
limits the measurements from the field and the data exchange among zone
C.C.s and DGs. In the following, (4.2) is revisited to get its decentralized
formulation. To this aim:

- it is rewritten for a grid partitioned into two VCZs;

- additional variables are introduced;

- the Lagrange Multipliers (MMs) is applied to solve the dual problem
working on the Augmented Lagrangian function (LA);

- the ADMM is applied to achieve a decentralized solution.
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4.1.1 VOP Partitioning

Let u1 (u2) be the vectors of variational variables including the voltage
amplitude of PN1 (PN2) and the reactive powers of the DGs in V CZ1

(V CZ2); in the first step, (4.2) is rewritten as, see Appendix

min
u1,u2

F (u1) + F (u2)

subject to (4.4)

eT11u1 + eT12u2 = 0 eT21u1 + eT22u2 = 0

u1min ≤ u1 ≤ u1max u2min ≤ u2 ≤ u2max

In comparison with (4.2), the objective function in (4.4) accounts only for
the voltages of the PNs with separable terms; then, it can be distributed
between the two VCZs together with the inequality constraints. As a draw-
back, the objective function remains convex but not in a strict sense. Then,
problem (4.4) presents local minimum points. Moreover, (4.4) is still not
fully-decentralized, because the equality constraints are not separable. In
fact, the first equality constraint highlights the influence of the injections
of the reactive powers of the DGs in both V CZ1 and V CZ2 on the voltage
amplitude of the PN1; a similar consideration stands for the second equality
constraint.

4.1.2 Additional Variables

To better handle the coupling constraints, additional scalar variables z11,
z12, z21 and z22 are introduced in (4.4), see Appendix

4.1.3 Method of Multipliers

To overcome the lack of strict convexity of the objective function, the dual
optimization problem, working on the LA function related to the coupling
constraints, is used and iteratively solved by the MMs [30], see Appendix.
Even if the MMs permits to handle the lack of strict convexity of the objective
function, the presence of the quadratic terms in the Augmented Lagrangian
[31–33]function still makes the problem nonseparable among the two VCZs.
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4.1.4 Alternating Direction Method of Multipliers

Finally, the ADMM [30], [34], [35] is used to decompose the VOP into
separable problems so as to obtain the optimization problem to be solved by
each zone C.C. and the data exchange between the two C.C.s, see Appendix
In particular, in each iteration of ADMM, the zone C.C. of V CZ1 solves the
following quadratic programming problem:

min
u1

1

2
u1

TH1u1 − h1
Tu1

subject to (4.5)
u1,min ≤ u1 ≤ u1,max

and the zone C.C. of V CZ2 solves the following quadratic programming
problem:

min
u2

1

2
u2

TH2u2 − h2
Tu2

subject to (4.6)
u2,min ≤ u2 ≤ u2,max

where H1 and H2 depend on the sensitivity coefficients in Γ; h1 and h2

depend on the values u∗
1 and u∗

2 of the variables obtained in the previous
step and on the Lagrange multipliers λ1, λ2, which are updated according
to:

λ1 = λ∗
1 + cw1 (4.7)

λ2 = λ∗
2 + cw2 (4.8)

where w1, w2 are calculated by:

w1 =
1
2

(
eT11 u1 + eT12 u2

)
(4.9)

w2 =
1
2

(
eT21 u1 + eT22 u2

)
(4.10)

The ADMM is implemented by a distributed algorithm whose steps are
Fig. 4.1:

i. initialize k = 0, u1 = 0, u2 = 0, λ1 = 0, λ2 = 0, and choose c;

ii. k = k + 1;
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,

k=k+1

u1(k)

true

solve (5   ).2 solve (     )5.3

|| (k) (k-1)||u u1 1- < uɛ

|w1 1(k) (k-1)|- < ww ɛ

true/false true/false

End

false false

choose

c,u u1 2(k) (k)=0 =0, ,

λ            λ1 2(k) (k)=0 =0,

(       )5.10 ( )5.11

(     )-(     )5.6 5.7

z z11 21(k), (k)

(     )-(     )5.6 5.7

(     )-(     )5.4 5.5

w w1 2(k) (k),

(     )-(     )5.4 5.5

w w1 2(k) (k),

λ λ1 2(k) (k), λ λ1 2(k) (k),

And

|| (k) (k-1)||u u2 2- < uɛ

| (k) (k-1)|w w2 2- < wɛ

u2(k)

k=k+1

z z12 22(k), (k)

Begin

h=0

Figure 4.1: Decentralized Algorithm (ADMM)

iii. V CZ1 and V CZ2 solve in parallel the minimization problems (4.5) and
(4.6), respectively, obtaining the vectors u1(k), u2(k);

iv. V CZ1 evaluates the scalars z11 and z21 (see (4.13) in Appendixand
V CZ2 evaluates the scalars z12 and z22 (see (4.14) in Appendix

v. V CZ1 receives z12 and z22 from V CZ2, while V CZ2 receives z11 and
z21 from V CZ1; V CZ1 and V CZ2 separately calculate w1 and w2

according to (4.9)-(4.10);

vi. both V CZ1 and V CZ2 separately evaluate λ1 and λ2 according to
(4.7)-(4.8);

48



CHAPTER 4. DECENTRALIZED VOLTAGE OPTIMIZATION PROBLEM

vii. V CZ1 checks if ∥u1(k)−u1(k−1)∥ < ϵu and |w1(k)−w1(k−1)| < ϵw;
V CZ2 if ∥u2(k)−u2(k− 1)∥ < ϵu and |w2(k)−w2(k− 1)| < ϵw (being
ϵu and ϵw predefined tolerances);

viii. if the output of step vii. is true for both problems then stop and u1(k)

and u2(k) are the solutions; else go back to step ii. and start a new
iteration.

By applying the ADMM, the VOP to be solved by each VCZ is a quadratic
programming problem of reduced dimension (see (4.5) and (4.6)); the adopted
method allows to cope with the lack of strict convexity of the objective func-
tions, assuring convergence. Furthermore, the data exchange between the
two C.C.s is limited to two scalar values (z11, z21, z22 and z12) at each itera-
tion, Fig. 4.1. It is worth noticing that the choice of the penalty parameter
c can reduce the number of iterations to converge.

4.1.5 Case Study with ADMM

The 24-nodes distribution network, supplied by a 20/0.4 kV substation and
including six DGs, Fig. 4.2, is clustered in two VCZs as in [6]. Details about
electrical parameters of the network and the loads are also reported in [6].

Figure 4.2: Distribution system

Tests have been carried out to verify the performance of the proposed de-
centralized algorithm, referred to as the decentralized VOP in the reminder.
In all the tests the decentralized VOP has reached convergence; the choice
of the penalty parameter c has impact only on the number of iterations to
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reach convergence. The parameter c can vary in the range of values from 0.1
to 10: in particular, it has been fixed c = 0.1, which has proved to be the
best choice. In the following some relevant results are reported referring to
the following three cases:

- Case 1 : VMV =0.99 p.u. and Sload=70%Srated
load ;

- Case 2 : VMV =1.025 p.u. and Sload=60%Srated
load ;

- Case 3 : VMV =0.985 p.u. and Sload=50%Srated
load .

Concerning the operating conditions of the DGs, Tab. 4.1 reports the values
of the active power injections for all the three cases, and the range of possible
variation of the reactive powers.

Table 4.1: Active Power Injections and Reactive Power Ranges for DGs
(ADMM)

Power Case DG1 DG2 DG3 DG4 DG5 DG6

1 0.020 0.015 0.025 0.015 0.015 0.010
Active

2 0.010 0.005 0.005 0.025 0.003 0.002
(MW)

3 0.018 0.012 0.022 0.012 0.012 0.007

Reactive
1/2/3 ±0.0150 ±0.0113 ±0.0188 ±0.0113 ±0.0113 ±0.0075

(MVAr)

The accuracy of the solutions provided by the decentralized VOP is ana-
lyzed and compared with those of other centralized methods; The improve-
ment of the voltage profiles obtained by the decentralized VOP is shown with
respect to the case without any kind of VOP; The convergence characteris-
tics of the decentralized VOP are compared with the ones of a previously-
proposed decentralized algorithm [6].

The accuracy of the solutions obtained by the decentralized VOP must
be compared with a reference case. To this aim, the ORPF problem is as-
sumed as the benchmark VOP and its objective function as a voltage profile
index (VPI). The ORPF problem is solved using MATPOWER package con-
sidering all the reference values of the nodal voltages equal to 1.0 p.u.. In
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Tab. 4.5 the values of the VPI obtained by the decentralized VOP for the
three cases are reported and compared with the benchmark VOP. For the
sake of completeness, Tab. 4.5 reports also the values of the VPI obtained by
solving the centralized VOP problem using quadprog function in MATLAB
environment, indicated as the VCZ-based VOP. This latter VOP adopts the
same objective function and the same linear model of the distribution sys-
tem as the decentralized VOP, but its solution is centralized. Comparing
the VPI values of the first and second column in Tab. 4.5, it is evident that
in all cases the solutions obtained by the VCZ-based VOP present larger
values than the corresponding solutions of the benchmark VOP : it is due
to the different objective function limited to PNs and to the linear model
of the distribution system adopted in the VCZ-based VOP. Comparing the
VPI values of the second and third column in Tab. 4.5, it is evident that the
decentralized VOP provides solutions that are very similar to the ones of the
VCZ-based VOP in terms of VPI values. Comparing the decentralized VOP
to the benchmark VOP, it can be stated that the order of magnitude of the
VPI values is the same for all the cases and, consequently, that a good level
of accuracy of the solution has been achieved.

The solutions obtained by the decentralized VOP in terms of reactive
powers injected by DGs are imposed in the distribution system load flow
to obtain the resulting voltage profiles along the feeders. Such profiles are
compared with the ones obtained by the benchmark VOP as well as with
the ones obtained assuming no VOP solution, that is imposing null reactive
powers injected by DGs.

For the Case 1, the voltage profiles of V CZ1 and V CZ2 are shown in
Figs. 4.3 and 4.4, respectively; similarly, Figs. 4.5 and 4.6 shown the voltage
profiles for the Case 2 and Figs. 4.7 and 4.8 for the Case 3.

From the figures, it is evident the improvement of the voltage profiles
when an optimization is performed and the proximity of those obtained by
the decentralized VOP to the ones obtained by the benchmark VOP.

The convergence characteristics of the decentralized VOP is analyzed
with reference to the number of iterations to reach convergence and to the
numerical solution.
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busbar main feeder lateral 1 lateral 2

Figure 4.3: Case 1: voltage profile in VCZ1 (ADMM)

busbar main feeder lateral 1 lateral 2

Figure 4.4: Case 1: voltage profile in VCZ2 (ADMM)

busbar lateral 1 lateral 2main feederbusbar lateral 1 lateral 2main feeder

Figure 4.5: Case 2: voltage profile in VCZ1 (ADMM)

52



CHAPTER 4. DECENTRALIZED VOLTAGE OPTIMIZATION PROBLEM

busbar lateral 1 lateral 2main feeder

Figure 4.6: Case 2: voltage profile in VCZ2 (ADMM)

busbar lateral 1 lateral 2main feeder

Figure 4.7: Case 3: voltage profile in VCZ1 (ADMM)

busbar lateral 1 lateral 2main feeder

Figure 4.8: Case 3: voltage profile in VCZ2 (ADMM)
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Table 4.2: Voltage Profile Index [10−3 p.u.] (ADMM)

Case benchmark VOP VCZ-based VOP decentralized VOP

1 2.18 2.82 2.74
2 1.91 2.99 3.65
3 1.84 2.35 2.36

Table 4.3: Number of iterations and Voltage Profile Index (ADMM)

Case Number of iterations VPI [10−3 p.u.]
decentralized GS decentralized VOP decentralized GS decentralized VOP

1 68 8 3.14 2.74
2 35 9 3.55 3.65
3 36 20 2.76 2.36

For the sake of comparison, the results obtained by using the decentral-
ized algorithm proposed in [6] are also reported. This algorithm, in the
following the decentralized GS, solves the dual problem of (4.4) by a decen-
tralized Gauss-Seidel method. In Tab. 4.6 the number of iterations and the
values of the VPI of the obtained numerical solutions are reported for all the
3 cases. Comparing the values obtained by the two decentralized algorithms,
it can be stated that in all the cases the decentralized VOP reaches, with less
iterations, a numerical solution which is more accurate with respect to the
decentralized GS.

4.1.6 Final considerations about ADMM

Using, therefore, the method of alternating direction of multipliers, a quadratic
programming problem of limited dimension was iteratively solved in each
voltage control zone and the coordination was obtained by exchanging only
two scalar quantities between the pilot nodes. The algorithm implement-
ing the iterative method has also been presented. The proposed approach
ensures convergence of the voltage optimization problem with a limited num-
ber of iterations. Of course this method can be easily extended to a network
partitioned into a greater number of clusters.
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Appendix

VOP partitioning

Let y1 (y2) be the variation of the squared nodal voltage at the PN1 (PN2),
that is y1 = ∆V 2

PN1
and y2 = ∆V 2

PN2
and x1 (x2) the subset of x related to

the DGs in V CZ1 (V CZ2). Then, (4.2) can be rewritten by distributing the
variables between the two zones as:

min
x1,x2

1
2 y

2
1 − y1ref y1 +

1
2 y

2
2 − y2ref y2

subject to (4.11)
y1 = Γ11x1 + Γ12x2 y2 = Γ21x1 + Γ22x2

y1min ≤ y1 ≤ y1max y2min ≤ y2 ≤ y2max

x1min ≤ x1 ≤ x1max x2min ≤ x2 ≤ x2max

where Γ11, Γ12, Γ21 and Γ22 are submatrices of Γ. Indicating as:

u1
T =

(
y1 xT1

)
and u2

T =
(
y2 xT2

)
(4.12)

(4.11) can be rewritten in the compact form (4.4) being

F (u1) =
1
2u

T
1A1u1 + bT1u1

F (u2) =
1
2u

T
2A2u2 + bT2u2

eT11 = ( 1 −Γ11 ) eT12 = ( 0 −Γ12 )

eT21 = ( 1 −Γ21 ) eT22 = ( 0 −Γ22 )

with:

A1 = A2 =

 1 0 0

0 0 0

0 0 0

 bT1 =
(
y1ref 0 0

)
bT2 =

(
y2ref 0 0

)
Additional variables

To handle the coupling between V CZ1 and V CZ2 additional scalar variables
are defined:

z11 = eT11u1 and z21 = eT21u1 (4.13)

z12 = eT12u2 and z22 = eT22u2 (4.14)

Assigning z11, z21 to V CZ1 and z22, z12 to V CZ2, (4.4) is rewritten as:
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min
u1,u2

F (u1) + F (u2)

subject to (4.15)

z11 + z12 = 0 z21 + z22 = 0

z11 = eT11u1 z12 = eT12u2

z21 = eT21u1 z22 = eT22u2

u1min ≤ u1 ≤ u1max u2min ≤ u2 ≤ u2max

In (4.15) equations that couple the two VCZs are the first two and are
expressed in the additional scalar variables z11, z12, z21 and z22 rather than
vectors u1 and u2 as in (4.4).

Method of Multipliers

The dual optimization problem of (4.15) is formulated, using the Augmented
Lagrangian function related to some of the equality constraints. The dual
problem is iteratively solved by the MMs; it consists of successive mini-
mizations of the problem (4.16) followed by the updates of the Lagrange
multipliers p11, p12, p21 and p22 in (4.17) so as to minimize the Augmented
Lagrangian within adequate precision [30], that is:

min

u1,z11,z12

u2,z21,z22
F (u1) + F (u2)

+p11(z11 − eT11u1) + p12(z12 − eT12u2)

+p21(z21 − eT21u1) + p22(z22 − eT22u2)

+ c
2(z11 − eT11u1)

2 + c
2(z12 − eT12u2)

2

+ c
2(z21 − eT21u1)

2 + c
2(z22 − eT22u2)

2

subject to (4.16)
z11 + z12 = 0 z21 + z22 = 0

u1min ≤ u1 ≤ u1max u2min ≤ u2 ≤ u2max

with:

p11= p∗11+ c(z11− eT11u1) p12= p∗12+ c(z12− eT12u2)
(4.17)

p21= p∗21+ c(z21− eT21u1) p22= p∗22+ c(z22− eT22u2)

where c is the penalty parameter and ∗ indicates the value assumed by the
variable at the previous step.

56



CHAPTER 4. DECENTRALIZED VOLTAGE OPTIMIZATION PROBLEM

Alternating Direction Method of Multipliers (ADMM)

The ADMM [30] is an iterative algorithm that decomposes (4.16)-(4.17) be-
tween the two VCZs according to:

VCZ1

min
u1

F (u1) + λ1eT11u1 + λ2eT21u1

+ c
2(e

T
11(u1 − u1

∗) + w∗
1)

2

+ c
2(e

T
21(u1 − u1

∗) + w∗
2)

2

subject to (4.18)

u1min ≤ u1 ≤ u1max

VCZ2

min
u2

F (u2) + λ1eT12u2 + λ2eT22u2

+ c
2(e

T
12(u2 − u2

∗) + w∗
1)

2

+ c
2(e

T
22(u2 − u2

∗) + w∗
2)

2

subject to (4.19)

u2min ≤ u2 ≤ u2max

whereas the Lagrange multipliers are updated according to:

λ1 = λ∗
1 + cw1 λ2 = λ∗

2 + cw2 (4.20)

with w1, w2 calculated as:

w1 =
1
2

(
eT11u1 + eT12u2

)
(4.21)

w2 =
1
2

(
eT21u1 + eT22u2

)
(4.22)

The minimization problems (4.18)-(4.19) are rewritten in the compact form
(4.5)-(4.6) with

H1 = A1 + c

(
1 −Γ11

−ΓT11 ΓT11Γ11

)
+ c

(
0 0

0 ΓT21Γ21

)

H2 = A2 + c

(
1 −Γ22

−ΓT22 ΓT22Γ22

)
+ c

(
0 0

0 ΓT12Γ12

)
hT1 = bT1 + λ1eT11 + λ2eT21

+c eT11(w1 − u∗
1e11)

T + c eT21(w2 − u∗
1e

T
21)

hT2 = bT2 + λ1eT12 + λ2eT22
+c eT22(w2 − u∗

2e22)
T + c eT12(w1 − u∗

2e
T
12)
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with w1, w2 and λ1, λ2 being updated according to (4.21)-(4.22) and (4.20),
respectively.

4.2 Decentralized VOP with APP

The centralized VOP is revisited to get its decentralized formulation using
the Auxiliary Problem Principle (APP). To this aim:

A. the centralized VOP is rewritten for the network partitioning in VCZs;

B. the new VOP is reformulated as an unconstrained VOP by using the
Augmented Lagrangian (LA) solved by the MMs;

C. the unconstrained VOP is decomposed and solved by applying the
APP.

4.2.1 VOP Partitioning

As in [6], the distribution network is divided into VCZs by adopting a net-
work partitioning method [10, 26]. In the following only two VCZs (V CZ1,
V CZ2) are considered; by the way, it is without loss of generality, because
the results can be extended to a larger number of VCZs. For each VCZ a PN
is identified (PN1, PN2) [27]. The VOP is reformulated with a new objective
function. It takes into account only the deviation of the nodal voltages at
the PNs from their reference values. By distributing the variables between
the two VCZs, the VOP is rewritten as

min
x1,x2

1

2
y21 − y1ref y1 +

1

2
y22 − y2ref y2

subject to (4.23)
y1 = Γ11x1 + Γ12x2 y2 = Γ21x1 + Γ22x2

y1min ≤ y1 ≤ y1max y2min ≤ y2 ≤ y2max

x1min ≤ x1 ≤ x1max x2min ≤ x2 ≤ x2max

where y1(y2) is the variation of the voltage at PN1(PN2); y1ref(y2ref) the
variation of the voltage reference value at PN1(PN2); x1 (x2) the vector
of the variations of the set-points of the DG reactive power controllers in
V CZ1(V CZ2); Γ11 (Γ22) a submatrix of Γ that relates the squared nodal
voltage at PN1(PN2) to the reactive powers injected by the DGs in same
VCZ; Γ12 (Γ21) a submatrix of Γ that relates the squared nodal voltage
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at PN1(PN2) to the reactive powers injected by the DGs in other VCZ;
[y1min, y1max] ([y2min, y2max]) the admissible range of variation of y1(y2);
[x1min,x1max] ([x2min,x2max]) the vector of the admissible range of variation
of x. While the objective function in (4.23) can be distributed between the
two VCZs, the equality constraints presents coupling terms and, then, can-
not be separated. To allow easier management of coupling constraints, the
overlapping variables w12 and w21 are introduced and (4.23) is rewritten by
introducing some additional constraints assuring consistency of the problem
as

min
x1,x2

1

2
y21 − y1ref y1 +

1

2
y22 − y2ref y2

subject to (4.24)
y1 = Γ11x1 + w12 y2 = Γ22x2 + w21

w12 = Γ12x2 w21 = Γ21x1

y1min ≤ y1 ≤ y1max y2min ≤ y2 ≤ y2max

x1min ≤ x1 ≤ x1max x2min ≤ x2 ≤ x2max

Finally, by substituting the coupling constraints in the objective function
and by introducing the vectors z1T = (x1 w12) and z2T = (x2 w21), (4.24)
can be rewritten in matrix form

min
z1,z2

F (z1) + F (z2)

subject to (4.25)
eT11z1 + eT12z2 = 0 eT21z1 + eT22z2 = 0

y1min ≤ cT1z1 ≤ y1max y2min ≤ cT2z2 ≤ y2max

z1min ≤ D1z1 ≤ z1max z2min ≤ D2z2 ≤ z2max

with F (z1), F (z2), eT11, eT12, eT21, eT22, cT1 , cT2 , D1, D2 defined in Appendix.The
VOP (4.25) is still not fully-decentralized, because the equality constraints
are not separable. Moreover, it presents local minimum points because,
considering only the PNs, the objective function remains convex but not in
a strict sense.

4.2.2 Method of Multipliers

To overcome the lack of strict convexity, the dual optimization problem based
on the AL function is used and iteratively solved by the MMs [30]. It consists
of successive minimizations of the following not constrained problem
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min
z1,z2

F (z1) + F (z2) + λ1f12 + λ2f21 +
c

2
f2
12 +

c

2
f2
21

subject to (4.26)

y1min ≤ cT1z1 ≤ y1max y2min ≤ cT2z2 ≤ y2max

z1min ≤ D1z1 ≤ z1max z2min ≤ D2z2 ≤ z2max

where c is the penalty parameters and with

f12 = eT11z1 + eT12z2 f21 = eT21z1 + eT22z2 (4.27)

followed by updates of the Lagrange multipliers1

λ1 = λ∗
1 + ρf12 λ2 = λ∗

2 + ρf21 (4.28)

where ρ is a positive parameter. Although the MMs permits to handle the
lack of strict convexity of the objective function, the presence of the quadratic
terms in the AL function still makes the VOP (4.26) not separable among
the two VCZs.

4.2.3 Auxiliary Problem Principle

The APP [31, 32, 38] is used to decompose the centralized VOP into sub-
problems that must be solved by each Zone Control Center (ZCC) and to
coordinate the solutions of subproblems toward the solution of the overall
problem. The APP adds an auxiliary function K(z1, z2) to the objective
function and replaces the quadratic terms of the AL with a linear approx-
imation around the solution of the previous step. Applying APP to the
master problem (4.26), the following auxiliary problem is derived2

min
z1,z2

K(z1, z2)

+
(
ϵF ′(z∗1)−K ′(z∗1)

)
z1 +

(
ϵF ′(z∗2)−K ′(z∗2)

)
z2

+ϵ(λ∗
1 + cf∗

12)f12 + ϵ(λ∗
2 + cf∗

21)f21

subject to (4.29)

y1min ≤ cT1z1 ≤ y1max y2min ≤ cT2z2 ≤ y2max

z1min ≤ D1z1 ≤ z1max z2min ≤ D2z2 ≤ z2max

where ϵ is a positive parameter and the Lagrange multipliers are updated
with (4.28). The auxiliary function is chosen as

K(z1, z2) = 1
2z

T
1K1z1 + 1

2z
T
2K2z2 (4.30)

1The symbol ∗ indicates the value assumed in the previous step.
2The symbol ′ indicates the derivative.
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being K1 and K2 suitably-chosen positive-definite matrices. The choice of a
K(z1, z2) strictly convex assures the existence and uniqueness of the solution
to (4.29). Furthermore, a K(z1, z2) additive, together with the first-order
approximation of the quadratic terms of the LA, permit to split (4.29) into
independent subproblems. Applying the APP (see Appendixfor details), in
V CZ1 it is solved the following quadratic programming problem

min
z1

1

2
zT1K1z1 − kT1z1

subject to (4.31)
y1min ≤ cT1z1 ≤ y1max z1min ≤ D1z1 ≤ z1max

and in V CZ2

min
z2

1

2
zT2K2z2 − kT2z2

subject to (4.32)
y2min ≤ cT2z2 ≤ y2max z2min ≤ D2z2 ≤ z2max

where k1 and k2 are defined as

kT1 = ϵ(z∗1
TA1 − bT1)− z∗1

TK1 + ϵλ1eT11 + ϵλ2eT21 +

+ϵcf∗
12e

T
11 + ϵcf∗

21e
T
21

kT2 = ϵ(z∗2
TA2 − bT2)− z∗2

TK2 + ϵλ1eT12 + ϵλ2eT22 +

+ϵcf∗
12e

T
12 + ϵcf∗

21e
T
22

and, then, depend, respectively, on the values of z∗1, z∗2 assumed in the
previous step and on the Lagrange multipliers λ1, λ2, which are updates
with (4.28). Subproblems are iteratively solved to reach convergence; the
convergence characteristics are strictly related to the choice of the parame-
ters ϵ, c, ρ [33].

The APP is implemented by a distributed algorithm whose steps are
Fig.4.9:

i. initialize the step counter h = 0, together with z1 = 0, z2 = 0, λ1 = 0,
λ2 = 0; choose ϵ, c, ρ and fix the tollerances τf and τz;

ii. h = h+ 1;

iii. V CZ1 and V CZ2 solve in parallel the minimization problems (4.31)
and (4.32), obtaining respectively the vectors z1(h) and z2(h);
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Begin

,

h=h+1

z1(h)

solve (     )6.9 solve (       )6.10

choose

ɛ c, , z z, ρ 1 2(h) (h)=0 =0, ,

λ λ1 2(h) (h)=0 =0,

h=0

z2(h)

h=h+1

evaluate
z1(h)e11

T

z1(h)e21
T

evaluate
z2(h)e22

T

z2(h)e12
T

(6   )-(     ).5 6.6 (6   )-(     ).5 6.6

f12 21(h), (h)

λ λ1 2(h) (h),
12 21(h), (h)

λ λ1 2(h) (h),

true

|| (h) (h-1)||z z1 1

|f12(h)|<τf

true/false true/false

End

false false
And

|| (h) (h-1)||z z2 2 <τz

| (h)|f21 <τf

f f f

<τz

Figure 4.9: Decentralized Algorithm (APP)

iv. V CZ1 evaluates the two scalar values eT11z1(h) and eT21z1(h), while
V CZ2 evaluates the two scalar values eT22z2(h) and eT12z2(h); the two
zones exchange each other the evaluated values;

v. V CZ1 and V CZ2 calculate in parallel both the values f12(h) and f21(h)

by (4.27), and both the values of λ1(h) and λ2(h) by (4.28);

vi. V CZ1 (V CZ2) checks if errors |f12(h)| (|f21(h)|) are smaller than τf

and the variations of the elements of z1(h) (z2(h)) with respect to
the previous iteration are smaller than τz; if false, go back to step ii.;
otherwise stop.
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In conclusion, by applying the APP, the VOP to be solved by each VCZ
is a quadratic programming problem of small dimension, that can be easily
be solved presenting a global minimum. Furthermore, the data exchange
between the two ZCC at each iteration is limited to a set of two scalar
values, respectively (eT11z1, eT21z1) and (eT22z2, eT12z2).

4.2.4 Case Study with APP

The 24-nodes distribution network with DGs in Fig. 4.2 is considered. A
20/0.4 kV substation, equipped with a 0.250 MVA transformer, feeds a 0.4
kV network composed of two main feeders, each one with two laterals. The
electrical parameters of the network and the loads are reported in [6]. The
LV network has been partitioned into two VCZs as in [6].

Tests have been carried out to verify the performance of the proposed
APP decentralized algorithm, referred to as the decentralized APP in the
reminder. In all the tests the decentralized APP has reached convergence;
the choice of the penalty parameter c has impact only on the number of
iterations to reach convergence. The parameter c can vary in the range of
values from 0.1 to 10: in particular, in the tried APP algorithm, c = 0.1 has
proved to be the best choice.

In the following some relevant results are reported referring to the fol-
lowing four cases:

- Case 1 : VMV =0.99 p.u. and Sload=70%Srated
load ;

- Case 2 : VMV =1.025 p.u. and Sload=60%Srated
load ;

- Case 3 : VMV =0.975 p.u. and Sload=50%Srated
load ;

- Case 4 : VMV =1.04 p.u. and Sload=50%Srated
load .

Concerning the operating conditions of the DGs, Tab. 4.4 reports the
values of the active power injections for all the four cases, and the range of
possible variation of the reactive powers.

The accuracy of the solutions is evaluated by comparing the value of the
objective function obtained by the decentralized APP with those obtained
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Table 4.4: Active Power Injections and Reactive Power Ranges for DGs
(APP)

Power Case DG1 DG2 DG3 DG4 DG5 DG6

1 0.02 0.015 0.025 0.015 0.015 0.01
Active

2 0.01 0.005 0.005 0.025 0.003 0.002
(MW)

3/4 0.018 0.012 0.022 0.012 0.012 0.007

Reactive
1/2/3/4 ±0.015 ±0.0113 ±0.0188 ±0.0113 ±0.0113 ±0.0075

(MVAr)

Table 4.5: Comparison of the objective functions [p.u.] (APP)

Case VCZ-based VOP decentralized ADMM decentralized APP

1 < 10−8 < 10−8 < 10−8

2 < 10−8 < 10−8 < 10−8

3 5.658*10−6 5.658*10−6 5.659*10−6

4 1.891*10−3 1.891*10−3 1.891*10−3

by the other methods, namely VCZ-based VOP and decentralized ADMM.
All the methods work on the PNs but

• the decentralized APP solves the VOP (4.23) with a decentralized ap-
proach by means of the APP algorithm.

• the VCZ-based VOP solves the VOP (4.23) with a centralized ap-
proach;

• the decentralized ADMM solves the VOP (4.23) with a decentralized
approach by means of the by the Alternating Direction Method of
Multipliers (ADMM).

All the three methods solved the VOP in (4.23) with quadprog function
of MATPOWER package in MATLAB environment.

In Tab. 4.5 the values of the objective functions obtained by the decen-
tralized APP for the four cases are reported and compared with those of the
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VCZ-based VOP and the decentralized ADMM. For the Case 1 and Case 2
all the three methods are able to guarantee that the solution accuracy goes
below the value of 10−8[p.u.], which represents the threshold value to assure
that the method freely converged to the solution. The solutions obtained by
the VCZ-based VOP present the best minimization of the objective function
with respect to the corresponding solutions of both decentralized methods.
The situation is different for Case 3 and Case 4, where all the three al-
gorithms get to the same minimization values; this is due to saturation of
reactive power capabilities of the DG inverters. All the three methods are
not longer free to get to the desired solution but the convergence of each
algorithm is bound by the reactive power limits imposed by DG inverters.
Nevertheless, it can be stated that the decentralized APP, when saturation
conditions do not occur, provides a satisfactory level of accuracy of the VOP
solution, bringing the optimization function to negligible values.

Tab. 4.6 reports the number of iterations to reach convergence of the
two decentralized approaches for all the four cases. Comparing the values
obtained by the two decentralized algorithms, it can be stated that in Case
1 and Case 2 the decentralized ADMM is faster to reach convergence with
respect to decentralized APP, which, on the other hand, is the fastest in
Case 3 and Case 4. More in general, the behaviour of the decentralized APP
proves to be more stable than the one of the decentralized ADMM ; in fact,
also when saturation occurs, the number of iterations stays almost unaltered
for the decentralized APP, whereas evidently increases for the decentralized
ADMM.

About the convergence, a further investigation is based on the analysis
of errors on coupling constraints, see (4.27), for both the decentralized algo-
rithms. Fig. 4.10 reports the trends of the maximum error versus the number
of iterations in Case 2 and Case 4. In the first steps of the iteration process,
the error increases to reach a peak value and successively goes down. The
convergence of both algorithms is complete when the value of the error on
coupling constraints goes down to 10−4. In Case 2, especially for the de-
centralized ADMM algorithm, the peak value is lower and the descent phase
is faster than in Case 4. As evident from Fig. 4.10, the decentralized APP
shows a more consistent behaviour than the decentralized ADMM.
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Table 4.6: Number of iterations to reach convergence (APP)

Case decentralized ADMM decentralized APP

1 7 17
2 8 14
3 24 18
4 38 19

# of iterations
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Figure 4.10: Error vs. n° of iterations: Case 2 (right), Case 4 (left) (APP)

The decentralized APP profiles are compared with the ones obtained by
the classical benchmark ORPF (which solves the VOP (4.23) with non lin-
ear power flow equations) well as with the ones obtained assuming no VOP
solution (that is imposing null reactive powers injected by DGs).

In Fig. 4.11 the voltage profiles are reported for V CZ1 and V CZ2 with
reference to Case 1 ; likewise Figs. 4.12, 4.13, 4.14 with reference to, respec-
tively, Case 2, Case 3, Case 4. In all the analyzed cases, the decentralized
APP guarantees a voltage profile which is quite close to that of the bench-
mark ORPF ; moreover, its improvement of the voltage profiles with respect
to the case of no VOP solution is always evident. Fig. 4.14 clearly shows
how, in Case 4, the voltage profiles of the decentralized APP and the bench-
mark ORPF are overlapped one with the other: this occurrence is due to
the fact that the reactive power solutions, for both algorithms, saturate the
reactive power capabilities of all the DG inverters.
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Figure 4.11: Voltage profile in Case 1 : V CZ1 (top) V CZ2 (bottom) (APP)
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Figure 4.12: Voltage profile in Case 2 : V CZ1 (top) V CZ2 (bottom) (APP)
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Figure 4.13: Voltage profile in Case 3 : V CZ1 (top) V CZ2 (bottom) (APP)
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Figure 4.14: Voltage profile in Case 4 : V CZ1 (top) V CZ2 (bottom) (APP)
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4.2.5 Final considerations about APP

The main advantage of the proposed distributed algorithm is that it achieves
the global optimal solution by iteratively solving strictly-positive definite
quadratic subproblems of small dimension. To this aim, first the network is
partitioned in voltage control zones and then the voltages at the pilot nodes
are optimized by determining the best reactive powers injected by the DGs of
the related zones. To account for the coupling among the different zones, the
zonal subproblems are iteratively solved after exchanging a limited amount
of data (two scalar values). The tests on a 24-nodes LV distribution grid
with six DGs have shown a significant improvement of the voltage profile.

Appendix

VOP partitioning

F (z1) = 1
2z

T
1A1z1− bT1z1 F (z2) = 1

2z2
TA2z2− b2

Tz2

eT11 = (0 1) eT12 = (−Γ12 0)

eT21 = (−Γ21 0) e22T = (0 1)

A1 =

(
ΓT11Γ11 ΓT11
Γ11 1

)
A2 =

(
ΓT22Γ22 ΓT22
Γ22 1

)
bT1 = (y1refΓ11 y1ref) bT2 = (y2refΓ22 y2ref)

cT1 = (Γ11 1) cT2 = (Γ22 1)

D1 = diag(1 1) D2 = diag(1 1)

Auxiliary Problem Principle (APP)

Using (4.30) and deriving K and F , (4.29) is rewritten as:

min
z1,z2

1
2z

T
1K1z1 + 1

2z
T
2K2z2

+ϵ(z∗1
TA1 − bT1)z1 + ϵ(z∗2

TA2 − bT2)z2 +

−z∗1
TK1z1 − z∗2

TK2z2 + ϵλ∗
1f12 + ϵλ∗

2f21 +

+ϵcf∗
12f12 + ϵcf∗

21f21

subject to (4.33)

y1min ≤ cT1z1 ≤ y1max y2min ≤ cT2z2 ≤ y2max

z1min ≤ D1z1 ≤ z1max z2min ≤ D2z2 ≤ z2max
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where the Lagrange multipliers are updates according to (4.28). The APP (4.33)
is decomposed into two subproblems as:

VCZ1

min
z1

1
2z

T
1K1z1 + ϵ(z∗1

TA1 − bT1)z1 − z∗1
TK1z1 +

+ϵλ∗
1e

T
11z1 + ϵλ∗

2e
T
21z1 + ϵcf∗

12e
T
11z1 + ϵcf∗

21e
T
21z1

subject to (4.34)

y1min ≤ cT1z1 ≤ y1max z1min ≤ D1z1 ≤ z1max

VCZ2

min
z2

1
2z

T
2K2z2 + ϵ(z∗2

TA2 − bT2)z2 − z∗2
TK2z2 +

+ϵλ∗
1e

T
12z2 + ϵλ∗

2e
T
22z2 + ϵcf∗

12e
T
12z2 + ϵcf∗

21e
T
22z2

subject to (4.35)

y2min ≤ cT2z2 ≤ y2max z2min ≤ D2z2 ≤ z2max

where the Lagrange multipliers are updates according to (4.28). Eventu-
ally the minimization problems (4.34)-(4.35) can be rewritten in a compact
quadratic form defining

kT1 = ϵ(z∗1
TA1 − bT1)− z∗1

TK1 + ϵλ1eT11 + ϵλ2eT21 +

+ϵcf∗
12e

T
11 + ϵcf∗

21e
T
21

kT2 = ϵ(z∗2
TA2 − bT2)− z∗2

TK2 + ϵλ1eT12 + ϵλ2eT22 +

+ϵcf∗
12e

T
12 + ϵcf∗

21e
T
22

4.3 Decentralized VOP with two-levels algorithm

This chapter deals with the problem of optimizing voltage profiles in dis-
tribution networks adopting a two-levels algorithm. Firstly, the network is
divided into several weakly-coupled VCZs with PN. Hence, partitioning is
used to optimize the voltage profiles of distribution systems on the plot of a
coordinated approach based on two time scales. At the first level, a central-
ized VOP is solved, minimizing the distance of the bus voltages at the PNs
from their reference values and subject to linearized power flow equations,
to fix the switch positions under load (OLTC) and step voltage regulators
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Figure 4.15: Representation of the VOP Formulation (Two-Levels)

(SVR), and the reactive powers supplied by capacitor banks (CB). At the sec-
ond level, the VOP is implemented according to a decentralized approach, in
which the solution is obtained by applying a distributed algorithm based on
the alternate direction multiplier method (ADMM). It optimizes the voltage
at the PN in each VCZ by acting on the active and reactive powers supplied
by the DER present in the VCZ; VCZ solutions are driven to the global
optimization of the entire distribution system by a limited data exchange
between the PNs.

4.3.1 Voltage Optimitation Problem Formulation

The distribution network includes a OLTC at the supplying substation, Msvr

and Mcb along the feeders, and Mder. The proposed formulation of the VOP
consists of two stages: firstly, the network is partitioned in VCZs off-line;
then, the representation in VCZs is used to optimize the voltage profiles of
the distribution systems by solving a two-levels on-line VOP that aims at
defining the optimal set-points of conventional and unconventional Voltage
Control Devices (VCDs). A representation of the formulation of the pro-
posed VOP is highlighted in Fig. 4.15. The operation in real-time of the
local controllers is not treated in this work.
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A Network partitioning;

The grid is partitioned into Nvcz VCZs with PNs by using the zoning
methodology in [10].
The division of the network in VCZs requires the definition of electrical dis-
tances, which are a measure of the electrical connectedness among the nodes
of the grid.
The most common methods to evaluate the electrical distances use the sensi-
tivities of the nodal voltages to power injections [26,39]. In [10] the sensitivity
coefficients are derived from the linear method for the steady-state analysis
of the distribution system in [25].
Starting from an initial operating point, the linear method provides the sen-
sitivity coefficients that linearly relate the variations of the active and the
reactive powers out-flowing the nodes of the grid and of the squared nodal
voltages to the variations of the powers injected in all the nodes of the grid,
independently from the number and position of the DERs in a specific con-
figuration.
In [10], the electrical distances are evaluated considering the sensitivities of
the nodal voltages to active and reactive power injections, that can be taken
into account separately or simultaneously. Once the electrical distances have
been evaluated, nodes with similar electrical distances are grouped to form
a VCZ by using the hierarchical clustering algorithm in [27].
In each VCZ a PN is identified, that is the node whose voltage variation best
represents the voltage variations of all the nodes in the VCZ; the identifi-
cation uses the algorithm in [20] to evaluate the proximity of each node to
all the other nodes belonging to the same VCZ. Finally, the best number of
VCZs is chosen by using the Silhouette index, that is the most widely-used
index for evaluating the number of VCZs in the partition when hierarchical
algorithms are applied. In practice, among different partitions of the net-
work that present similar values of the Silhouette index, the choice can be
based also on the criterion of guaranteeing a minimal number of VCDs in
each VCZ.
In such a way, the partition of the network is fixed and it is extracted from
structural characteristic of the network. Obviously, if different configurations
of the topology of the network are possible, then different partitions can be
evaluated off-line. Such an approach allows to reduce the computational ef-
fort of auxiliary service analysis in distribution network without degrading
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Figure 4.16: Information Exchange in the First Level VOP.

the performance of the clustering, thanks to the high accuracy of the linear
method adopted for evaluating electrical distances [40].

B First level VOP;

At the first level a slow time-scale optimization is performed to fix the
tap positions of both OLTC and SVRs, and the reactive power provided
by CBs. The first level VOP is implemented according to a centralized
approach. It measures the voltage amplitudes at the PNs and, solving a
constrained linearized optimization problem that minimizes the deviation of
the squared voltage amplitude at the PNs, V 2

pni
, from their reference values,

V 2
pni,ref

, defines the optimal set-points of the OLTC tap position, aoltc, the
Msvr tap positions of the SVRs, asvrj , and the Mcbt reactive powers of the
CBs, Qcbt then, such set-points are sent to the PNs for performing the
second level VOP Fig. 4.15. The information exchange related to the adopted
centralized approach is highlighted in Fig. 4.16.

C Second level VOP;

At the second level a fast time-scale optimization is performed to fix
the set-points of the DER active and reactive power controllers. The sec-
ond level the VOP is implemented according to a decentralized approach
which is executed with the updated values of the set-points acquired from
the first level. In each VCZ a centralized VOP is solved at its PN. Referring
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Figure 4.17: Information Exchange in the Second Level VOP.

to the i-th VCZ, by measuring the bus voltage at the PN, a constrained
linearized optimization problem that minimizes the only deviation of V 2

pni

from V 2
pni,ref

is solved in order to define the optimal set-points of the active
power Pderk and the reactive power Qderk of DERs. The decentralized so-
lution is achieved iteratively by exchanging scalar variables between PNs.
The information exchange of the second level VOP related to the adopted
decentralized approach is highlighted in Fig. 4.17.

4.3.2 OLTC, SVRs and CBs Optimization

The centralized VOP solved at the first level is

min
aoltc, asvr1 ,...,aMsvr

Qcb1
,...,QcbMsvr

Nvcz∑
i=1

(V 2
pni

− V 2
pni,ref

)2

subject to (4.36)

PF equations

V 2
pni,min

≤ V 2
pni

≤ V 2
pni,max

i = 1, . . . , Nvcz

aoltcmin ≤ aoltc ≤ aoltcmax

asvrj,min ≤ asvrj ≤ asvrj,max j = 1, . . . ,Msvr

Qcbt,min ≤ Qcbt ≤ Qcbt,max t = 1, . . . ,Mcb

where the optimal solution must satisfy PF equations and the operational
limits on PN voltages, on the tap positions of OLTC and of SVRs and on
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the CBs reactive power.
Using an extended version of the linear model in [25] in place of PF

equations, (4.36) is rewritten in a variational form with respect to the initial
operating point as

min
∆a2oltc, ∆a2svr1 ,...,∆a2Msvr

∆Qcb1
,...,∆QcbMsvr

Nvcz∑
i=1

(∆V 2
pni

−∆V 2
pni,ref

)2

subject to (4.37)

∆V 2
pni

= Γoltc
i ∆V 2

oltc +

Msvr∑
j=1

Γsvr
ij ∆V 2

svrj +

Mcb∑
t=1

Γcb
it ∆Qcbt

∆V 2
pni,min

≤ ∆V 2
pni

≤ ∆V 2
pni,max

i = 1, . . . , Nvcz

∆V 2
oltc = soltc∆a2oltc

∆aoltcmin ≤ ∆aoltc ≤ ∆aoltcmax

∆V 2
svrj = ssvrj ∆a2svrj j = 1, . . . ,Msvr

∆asvrj,min ≤ ∆asvrj ≤ ∆asvrj,max j = 1, . . . ,Msvr

∆Qcbt,min ≤ ∆Qcbt ≤ ∆Qcbt,max t = 1, . . . ,Mcb

where Γoltc
i , Γsvr

ij , and Γcb
it are the sensitivities of the bus voltage at the i-th

PN to, respectively, the squared voltage at the terminal bus of the OLTC,
∆V 2

oltc, to the squared voltage at the terminal bus of the j-th SVR, ∆V 2
svrj ,

and to the reactive power injected by the t-th CB. The voltages ∆V 2
oltc and

∆V 2
svrj are related to the corresponding tap positions ∆a2oltc and ∆a2svrj by

the sensitivities soltc and ssvrj , respectively.
Defining the vector y of the PN voltages and the vector xc of set-points

of the conventional voltage control devices

yT= {∆V 2
pn1

, . . . ,∆V 2
pnNvcz

}

xTc= {∆a2oltc,∆a2svr1 , . . . ,∆a2svrMsvr
,∆Qcb1 , . . . ,∆QcbMcb

}

the VOP (4.37) is rewritten in a matrix form as

min
xc

1

2
xc

THcxc − hc
Txc

subject to (4.38)

ymin ≤ y ≤ ymax

xc,min ≤ xc ≤ xc,max

where
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Hc = Γc
TΓc hc = yrefΓc

T

Γc =
(
Γoltcsoltc ΓsvrSsvr Γcb

)

4.3.3 DERs Optimization

The VOP at the second level is initially formulated in a centralized manner.
Then, it is reformulated according to a decentralized approach to obtain
separable VOPs in each VCZ. Finally, a distributed algorithm is implemented
to provide the VOP solution by exchanging scalar variables between PNs.

A Centralized formulation;

The VOP minimizes the same objective function as the one of the first
level but acts on the active and reactive powers of the unconventional control
devices, that is

min
Pder1

,...,PderMder
Qder1

,...,QderMder

Nvcz∑
i=1

(V 2
pni

− V 2
pni,ref

)2

subject to (4.39)

PF equations

V 2
pni,min

≤ V 2
pni

≤ V 2
pni,max

i = 1, . . . , Nvcz

Pderk,min ≤ Pderk ≤ Pderk,max k = 1, . . . ,Mder

Qderk,min ≤ Qderk ≤ Qderk,max k = 1, . . . ,Mder

The optimal solution must satisfy PF equations and limits on the PN voltages
and on the operational range of DERs. It is worth noting that the VOP (4.39)
is a not-strictly convex constrained quadratic problem, because the objective
function only refers to the voltages of the PNs. Always using the linear model
in [25] in place of PF equations, (4.39) is rewritten in a variational form with
respect to the initial operating point and, then, rewritten in a matrix form.
Defining the vector xu of set-points of the unconventional voltage control
devices

xTu = {∆Pder1 , . . . ,∆PderMder
,∆Qder1 . . . ,∆QderMder

}

the VOP (4.39) is rewritten in a matrix form as
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min
xu

1

2
xu

THuxu − hu
Txu

subject to (4.40)

ymin ≤ y ≤ ymax

xu,min ≤ xu ≤ xu,max

where
Hu = Γu

TΓu hu = yrefΓu
T

Γu =
(
ΓP der

ΓQder
)

B Decentralized formulation;

The VOP (4.40) is reformulated in a decentralized manner extending
the method proposed in [36]. In particular, the lack of strict convexity of
the VOP (4.39) is overcome by iteratively solving a dual centralized VOP
working on the augmented Lagrangian function by the method of multipliers.
Then, the dual centralized VOP is decomposed into separable problems by
applying the ADMM.

Referring to the i-th VCZ, let the vector ui be defined, including all the
variables, namely the PN nodal voltage and the set-points of the unconven-
tional voltage devices connected to the VCZ

uTi = {∆V 2
pni

,xTi }

At each iteration, each VCZ firstly solves a centralized VOP which optimizes
the voltage at the PN acting only on its local unconventional control devices

min
ui

1

2
ui

THiui − hi
Tui

subject to (4.41)

ui,min ≤ ui ≤ ui,max

with
Hi = fi(Γu, c)

hi = gi(Γu, c, λ1, . . . , λNvcz)

where c is the penalty parameter and λi are the Lagrange multipliers. The
expressions of Hi and hi are in Appendix. Then, the solutions of (4.41)
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obtained in the various VCZs are used to update the Lagrange multipliers
according to

λi = λ∗
i + cwi i = 1, . . . , Nvcz (4.42)

where ∗ indicates the value assumed by a variable in the previous step of
iteration, and

wi =
1

Nvcz

(
eTiiui +

Nvcz∑
j=1
j ̸=i

eTijuj

)
=

1

Nvcz

(
zii +

Nvcz∑
j=1
j ̸=i

zij
)

(4.43)

The expressions of eTii, eTij are in Appendix

C Distributed algorithm for decentralized solution;

It is possible to implement a distributed algorithm that provides the
solution of VOP (4.41)–(4.42) by exchanging only scalar variables among
PNs of each VCZ. The main steps of such an algorithm are described in the
following and highlighted in Fig. 4.18.

i. Initialize the step counter h = 0 and ui = 0 and λi = 0; choose c and
fix the tolerance τ ;

ii. h = h+ 1;

iii. each VCZ solve in parallel with the other VCZs the VOP (4.41), ob-
taining the vectors ui;

iv. each VCZ evaluates the additional scalar variables zii = eTiiui and
zji = eTjiui;

v. each VCZ provides the scalars zii and zji to the other VCZs and receives
from them the scalars zjj and zij ;

vi. each VCZ evaluates λi using (4.43) and (4.42);

vii. each VCZ checks if the changes of the values of ui with respect to the
ones of the previous iteration are small enough, that is |ui(h)−ui(h−
1)| < τ ;

viii. if the output of step vii. is true for all the problems then stop and ui(h)

are the solutions; else go back to step ii. and start a new iteration.
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Figure 4.18: Distributed Algorithm (Two-Levels)

4.3.4 Case Study With Two Levels Algorithm

The distribution system under study is the IEEE 123-bus feeder which oper-
ates at a nominal MV voltage of 4.16 kV. To apply the proposed methodology,
the distribution network is converted into a three-phase balanced system.
The load connected to the network in rated operating conditions is equal to
3.49 MW and 1.17 MVAr for total active and reactive powers, respectively.
The MV feeder is supplied by a 115/4.16 kV substation and the HV busbar
is assumed as the slack bus with rated voltage amplitude.

The following conventional VCDs of the original test feeder are included:
the OLTC on the substation transformer, the SVR #4 along the line seg-
ment 160-67, and the four CBs. The tap positions of both OLTC and SVR
can vary in the range from 0.95 p.u. to 1.05 with 20 positions; CBs can be
entirely connected or disconnected.
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Figure 4.19: The 123-bus test feeder with DERs, VCZs and PNs (Two-
Levels)

Concerning the DERs, 15 PVSs, each one of 250 kW peak active power,
are connected to the grid at nodes 3, 12, 17, 52, 70, 105, 63, 77, 87, 112, 18,
30, 40, 51 and 38 as reported in Fig. 4.19. In addition, at the premises of
8 out of the 15 PV systems a EESS is installed. The unconventional VCDs
consist of the 15 reactive power controllers of the PV systems and of the 8 ac-
tive power controllers of the EESSs. In particular, the reactive power of the
PV systems can be controlled in the range ±100 kVAr, whereas each EESS
can vary the active power exchanged with the network in the range ±50 kW.
Finally, the references values of the nodal voltages at the PNs are fixed equal
to 1.0 p.u. and the allowable range of the nodal voltages is [0.95,1.05].

The linear model in [25] is applied to evaluate the sensitivity coefficients
of the electrical variables to the powers injected in all the nodes of the grid.
The starting point to linearize PF equations and to obtain such sensitivity
coefficients is: voltage amplitude of the HV busbar equal to 1.025 p.u.; loads
equal to 100 % of their rated values; OLTC and SVR transformer ratios equal
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Table 4.7: Values of the Silhouette index for various network partioning
(Two-Levels)

Number of VCZs
3 4 5 6 7

Index 0.464 0.537 0.491 0.490 0.442

to 1.0; CBs switched off; and no DGs and EESSs connected to the grid. The
electrical distances are evaluated using the sensitivities of the squared nodal
voltages to the only reactive power injections, due to the R/X ratio of the
MV network. Then nodes are merged into a number of VCZs ranging from
3 to 7. Table 4.7 reports the Silhouette indices evaluated for the different
partitions. The Silhouette index present similar values; it reaches its maxi-
mum value for a network partitioned in 4 VCZs. The 4 resulting VCZs and
the corresponding PNs are highlighted in Fig. 4.19. Such a partition cor-
responds to have a good distribution of VCDs in each VCZs thanks to the
large number of DERs (i.e. 3 PVSs and 2 EESSs in V CZ1; 1 SVR, 4 CBs,
6 PVSs and 3 EESSs in V CZ2; 1 PVS and 1 EESS in V CZ3; 5 PVSs and 2
EESSs in V CZ4.)

The results of time simulations are reported to give evidence of the ef-
fective action of the proposed two-levels VOP.

The initial operating point of the IEEE 123-bus feeder is: loads equal to
80 % of the rated values; each PVS produces 200 kW with unity power factor
(for a total generation equal to 3.0 MW); no active power injected/absorbed
by EESSs; OLTC ratio and SVR ratio equal to 1.0; no CBs connected to the
network; such a case will be referred in the following to as Case A.

The first level VOP provides the optimal set-points of the conventional
VCDs, which are shown in Table 4.8. Analysing the results, it is evident the
increment of the OLTC tap position and the slight increase of the SVR tap
position; also, only one CB is switched on.

Acquiring the optimal set-points of the unconventional VCDs from the
first level, the second level VOP provides the optimal set-points of DERs,
which are shown in Table 4.9. It is evident that all the EESSs contribute
to voltage optimization absorbing or injecting active power as well as all the
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Table 4.8: Optimal set-points of conventional VCDs for different cases (Two-
Levels)

Set-points Case A Case B Case C Case D Case E Case F
aOLTC 1.020 0.990 1.030 1.030 1.015 1.025
aSV R 1.005 0.990 1.005 1.010 1.000 1.005
CB1 ON ON ON ON ON ON
CB2 OFF OFF ON ON ON OFF
CB3 OFF OFF ON ON OFF OFF
CB4 OFF OFF ON ON OFF OFF

PVSs use reactive power capability for grid support.

In the following the performance of the proposed approach is analyzed
in terms of voltage profile. Fig. 4.20 shows such voltage profile, which is
referred in the following to as two-levels VOP (it includes the 123-bus feeder
and the nodal voltage at the slack bus). For the sake of comparison, other
two voltage profiles are considered: the first one is obtained by solving the
PF equations without carrying out any optimization (it is referred to as no
VOP); the second one is obtained in absence of the second level VOP (it is
referred to as first level VOP). The results evidence that, in absence of any
voltage control action, the nodal voltages get close to the lower limit of the
acceptable operational range. The two-levels VOP improves the voltage pro-
file, thank to the second level VOP that move further up the nodal voltages
in comparison to the adoption of the first level VOP only. In fact, adopting
the two-levels VOP the voltage profile is more close to 1.0 p.u. .

The performance of the second level VOP is further analysed by com-
paring the voltage profile with the one obtained by adopting a centralized
approach which minimizes the distance of the voltages of all the nodes of
the feeder with respect to the rated value (1.0 p.u.) with a classical voltage
optimal power flow; results are shown in Fig. 4.21. In spite of the reduced
number of nodal voltages that are measured and considered (only 4) and
of the linearization of the PF equations, the proposed ADMM gives results,
in terms of voltage profiles, that are very near to the ones obtained by the
classical centralized method, which requires a state-estimation of the entire
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Table 4.9: Optimal set-points of unconventional VCDs for different cases
(Two-Levels)

Set-points
Case A Case B Case C Case D Case E Case F

PEESS QPV S PEESS QPV S PEESS QPV S PEESS QPV S PEESS QPV S PEESS QPV S

(kW) (kVAr) (kW) (kVAr) (kW) (kVAr) (kW) (kVAr) (kW) (kVAr) (kW) (kVAr)
DER1 -50 -100 50 100 -50 -100 -50 -100 -50 -100 -50 -100
DER2 – -100 – 100 – -100 – -100 – -100 – –
DER3 -50 -100 50 100 -50 -100 -50 -100 -50 -100 -50 -100
DER4 -50 -100 50 100 -50 -100 -50 -100 -50 -100 – –
DER5 50 100 -50 -100 50 100 50 70 -50 -100 50 100
DER6 – 21 – -45 – 100 – -22 – -65 – 82
DER7 – -100 – 100 – -100 – -100 – -100 – -100
DER8 50 51 -50 52 50 61 50 -100 50 100 – –
DER9 – -100 – 100 – -100 – -100 – 89 – -100
DER10 50 -49 -50 -68 50 -6 50 100 50 -75 – -5
DER11 50 100 -50 -100 50 100 50 100 50 100 – –
DER12 – 100 – -100 – 100 – 100 – 100 – 100
DER13 50 100 -50 -100 50 100 50 100 50 100 50 100
DER14 – 32 – 80 – -83 – 100 – -87 — 99
DER15 – 100 – -100 – 100 – 100 – 100 – –
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Figure 4.20: Voltage profiles in the Case A: no VOP (red), with only the
first level VOP (blue), with the two-levels VOP (black) (Two-Levels)
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Figure 4.21: Voltage profiles in the Case A: centralized second-level VOP
(green) and decentralized second-level VOP (black) (Two-Levels)

distribution system and uses the non-linear PF equations. For this reason, in
the continuation of this analysis, only the second level optimization obtained
by the proposed ADMM will be considered.

The performance of the two-levels VOP is evaluated in the following
operating conditions:

• Case B: operating conditions equal to the Case A except for the loads,
which are equal to 30 % of the rated values;

• Case C: operating conditions equal to the Case A except for the loads,
which are equal to 100 % of the rated values;

• Case D: operating conditions equal to the Case A except for the total
generation, which is equal to 0.9 MW with unity power factor;

• Case E: operating conditions equal to the Case A except for the total
generation, which is equal to 3.75 MW with unity power factor;

• Case F: operating conditions equal to the Case A except for the gen-
eration; in this case a different distribution of PVSs and EESSs is
considered in the VCZs (i.e. 2 PVSs and 2 EESSs in V CZ1; 1 SVR,
4 CBs, 4 PVSs and 1 EESSs in V CZ2; 1 PVS in V CZ3; 3 PVSs and
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1 EESSs in V CZ4) for a total generation equal to 2 MW with unity
power factor.

The optimal set-points of conventional and unconventional VCDs are
reported in Table 4.8 and Table 4.9, respectively, for all the considered cases.
Furthermore, Fig.s 4.22-4.26 report the voltage profiles without optimization,
with the only first level VOP and with the complete two-levels VOP for the
Case B, Case C, Case D, Case E, Case F, respectively.

Both load variations (Fig.s 4.22- 4.23) and generation variations (Fig-
ures 4.24- 4.26) have a great impact on the voltage profiles with respect to
the Case A, especially in the absence of optimization in which some nodal
voltages go below the lower limit (Case C, Case D and Case F). From the
analysis of the set-points and of the voltage profiles, it is apparent that the
proposed second level VOP significantly improves the voltage profiles with
respect to the ones obtained in absence of any action on the DERs.

The Case F refers to a lower penetration of DERs in the network. In par-
ticular, only 10 PVSs and 4 EESSs are installed into the grid. Comparing
Case F with Case A (that are characterized by the same load), it is possible
to see how a lower penetration of DERs implies that in the Case F the volt-
age profile significantly decreases towards values of lower voltage in absence
of any type of optimization. Considering the voltage profiles resulting from
the first level and the second level of optimization, while in the Case A they
are almost overlapped, in the Case F they are more distant and the second
optimization level is the one that makes the voltage profile closest to the
reference voltage of 1 p.u.. This result shows that also in presence of lower
penetration of DERs, the two levels optimization is still very effective.

The test network is simulated for 8 hours of operation by a sequence of
steady-state operating conditions. During the simulation the total load of
the network and the total active power generated by the PVSs vary every
1-minute according to the time evolution depicted in Fig. 4.27.

For the sake of simplicity, hereafter the time evolutions of the voltages at
the four PNs are analyzed, assuming them as representatives of the voltage
profiles of the system.

First of all, the test network has been simulated in absence of any con-
ventional VCDs and of any PV system or DERs. The results are reported
in Fig. 4.28, evidencing that, in absence of any voltage control action, the
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Figure 4.22: Voltage profiles in the Case B: no VOP (red), with only the
first level VOP (blue), with the two-levels VOP (black) (Two-Levels)
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Figure 4.23: Voltage profiles in the Case C: no VOP (red), with only the
first level VOP (blue), with the two-levels VOP (black) (Two-Levels)
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Figure 4.24: Voltage profiles in the Case D: no VOP (red), with only the
first level VOP (blue), with the two-levels VOP (black) (Two-Levels)
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Figure 4.25: Voltage profiles in the Case E: no VOP (red), with only the
first level VOP (blue), with the two-levels VOP (black)(Two-Levels)
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Figure 4.26: Voltage profiles in the Case F: no VOP (red), with only the
first level VOP (blue), with the two-levels VOP (black) (Two-Levels)
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Figure 4.28: Time evolution of voltages at the PNs in absence of conventional
VCDs and of DERs (Two-Levels)

passive network cannot supply the full load without causing undervoltages
out the acceptable operational range.

To overcome this problem, the conventional VCDs are installed and the
first level VOP is solved by the centralized control system every hour on the
basis of the load level (passive network). The results are reported in Fig. 4.29
in which the step voltage variations caused by the first level VOP are clearly
evident every full hour. The conventional VCDs, if adequately optimized,
significantly improve the nodal voltages, keeping them in the range 0.98–1.02
p.u. during the whole simulation.

When the 15 PVSs are connected to the network, they inject the active
power generated according to Fig. 4.27, thus causing an increase in the nodal
voltage amplitudes. The results are reported in Fig. 4.30 and, in comparison
with Fig. 4.29, clearly show the overvoltages that are caused by the DGs.

To overcome this problem the PVSs are equipped with a reactive power
capability and enriched by EESSs. A second level VOP is solved every 10
minutes according to the decentralized approach and the proposed ADMM
algorithm. The results are reported in Fig. 4.31 and give evidence of the
benefits introduced by the DER optimization. In particular the voltage am-
plitudes at the PNs are brought back within the range 0.98–1.02 p.u. during
the whole simulation. Fig. 4.32 reports the time evolution of the total reac-
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Figure 4.29: Time evolution of voltages at the PNs with the first level VOP
and without DERs (Two-Levels)

tive power injected by the PVSs and of the total active power injected by
EESSs. It is evident that the variations of these quantities take place every
10 minutes when the second level VOP is solved and the total powers are
generally negative, as expected to reduce the voltages. It is worth noticing
that it does not imply that all the DERs absorb powers, because they are
individually dispatched to optimize the voltage profile of the feeder.

4.3.5 Final considerations about the two-levels algorithm

The problem of optimizing the voltage profiles in power distribution net-
works has been tackled by a two-steps procedure. Firstly, the network has
been partitioned into VCZs with PNs; then, a twolevels time-scale based
coordinated approach has been applied to VOP. The first level evaluates the
set-points of conventional VCDs by centralized optimization of the PN volt-
ages [41]. The second level adopts a decentralized approach which optimizes
in each VCZ the PN voltage by acting on the DERs present in the same VCZ;
the VCZ solutions are driven to the global optimum by a data exchange be-
tween PNs. The application of the proposed VOP to the IEEE 123- bus
test system with DERs has been presented and results have evidenced the
negative impact of uncontrolled DGs in presence of conventional VCDs and
the benefits introduced by DER optimization. The proposed method reduces
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Figure 4.30: Time evolution of voltages at the PNs with the first level VOP
and with uncontrolled PVSs (Two-Levels)
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Figure 4.31: Time evolution of voltages at the PNs with the VOP (Two-
Levels)
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Figure 4.32: Time evolution of total reactive power (black) injected by the
PVSs and of the total active power (red) injected by the EESSs (Two-Levels)

the need for adding DERs as additional variables in the first level VOP, thus
reducing the complexity and dimensionality of the VOP in large distribu-
tion systems, and provides additional flexibility to the distribution system
operator by the zone control of DERs for voltage regulation. Added to this,
the proposed technique has economic benefits, due to limited communication
requirements, without significant loss of accuracy with respect to centralized
approaches.

Appendix

The following definitions apply to (4.41) and (4.43).

Hi=

(
1 0Txi

0xi 0Txi
0xi

)
+ c

(
1 −Γuii

−ΓTuii
ΓTuii

Γuii

)

+c
∑Nvcz

j=1
j ̸=i

(
0 0

0 ΓTuji
Γuji

)
hTi =

(
yiref 0Txi

) + λieTii + c eTii(wi − eTiiu
∗
i )

+
∑Nvcz

j=1
j ̸=i

λjeTji + c eTji(wj − eTjiu
∗
i )

eTii = (1 − Γuii) eTij = (0 − Γuij ) j = 1, ..., Nvcz j ̸= i

where 0xi is a vector of zeros with dimension dim(xi).
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Conclusions

The national electric power system was conceived with a hierarchical struc-
ture in which a limited number of large-scale production plants supplied the
loads through the transmission and distribution networks.

Nowadays, the grid is undergoing a deep transformation linked to the
constantly-increasing use of RESs for "zero impact" energy production. There
have been many international climate agreements promoting the reduction
of the emissions of greenhouse gases by a massive penetration of the DERs
exploiting RESs. Consequently, the traditional distribution grid must com-
pletely change its operation, transforming itself from a "passive" network,
in which energy flows from the supplying substation to the customers, to
an "active" network in which the consumer also becomes a producer. This
transition is known as the evolution towards smart grids. To this aim, it is
necessary to develop new strategies that are sustainable from an economic
and financial point of view and which, at the same time, overcome the tech-
nical limits of the existing networks.

This research has focused on the specific problem of voltage regulation
in the new scenario of the smart distribution grids. In fact, it is necessary
to rethink the traditional management techniques, because the conventional
control devices (transformers with under-load tap changers, capacitor banks
and step voltage regulators) are no longer sufficient and innovative control
devices must be added. As evidenced also by this research, a new significant
contribution to voltage regulation comes from innovative control strategies
of the active and reactive power injections by DERs.

In the first part of the research activity, the characteristics of the different
control structures were studied, starting from the centralized approach. The
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voltage optimization problem (VOP) is formulated similarly to an optimal
power flow addressing the problem of optimizing the voltage profile in an
active distribution network by exploiting the powers supplied by the DERs.

The objective function to be minimized is the distance of the nodal volt-
ages with respect to the reference values. The equality constraints are the
non linear power flow equations of the network while the inequality con-
straints are the acceptable ranges of the nodal voltages and of the powers
injected by the DERs. The problem considered is therefore a non convex
large problem. Surely it provides the optimal voltage control solution but it
presents possible convergence problems and significant computational bur-
den.

To overcome such problems, a linear modeling of the distribution system
was studied in the second part of the research activity.

To model the distribution system, in the presence of DER, after repre-
senting it through the equivalent circuits of the components, linearization
has been adopted. Starting from the branch, three different types of models
have been considered. The constrained-Jacobian exact one (previously pro-
posed in literature), the structural one (LinDistFlow) and the structural one
with losses. By combining the branches, the feeder modeling is obtained,
with and without losses, and the modeling of the lateral is outlined. Even-
tually, the model of the substation in combined with the feeders to obtain
the distribution system model.

A simple straight-forward algorithm has also been presented to evaluate
the sensitivity matrices for the structural linear model of the distribution
system. The algorithm can be extended to to the linear model with losses.

In the third part of the research activity, starting from the centralized
formulation of the VOP, the study concerned solving the problem adopting
the decentralized approach.

To this aim, a partition of the network into VCZs was carried out. The
steps taken to achieve this result are:

• definition of an electrical distance between the nodes of the network;

• grouping of VCZ nodes;

• identification of the PN in each VCZ;
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• determination of the optimal number of VCZ.

Then, the centralized optimization problem has been rewritten special-
izing it for the two zones. The decomposition of the problem was carried
out through the application of the alternating direction method of multipli-
ers (ADMM), a methodology widely used in the field of management and
control problems of smart grids according to the decentralized approach.
First, the augmented Lagrangian (LA) method and the Method of Multipli-
ers (MMs) have been applied. More specifically, the LA method is used to
solve constrained optimization problems. The constraints are introduced in
the objective function and weighted with multipliers that must be updated at
each iteration. Through MMs, on the other hand, successive minimizations
of the problem are carried out. In order to arrive at the final decomposition,
further manipulations are necessary due to the presence of the quadratic
terms introduced by LA which do not allow the splitting into two subprob-
lems. ADMM was used to overcome this problem. This is a cyclical method.
At each cycle, LA is optimized with respect to a set of variables and only
subsequently the minimization is performed with respect to the remaining
variables.

The proposed approach guarantees the convergence of the optimization
problem with a limited number of iterations and an accuracy of the solutions
very close to that obtained with the centralized approach. Finally, from nu-
merical simulations the improvements on the voltage profiles compared to
the absence of regulation are evident.

The decentralized approach was further investigated adopting another
decomposition approach. In this case, after dividing the network into two
VCZs and reformulating the centralized problem using the LA method and
the MMs method, the decomposition was performed using the APP. This
method, to our knowledge, has never been used for voltage regulation in
active distribution networks. APP modifies the initial problem by adding
an auxiliary function to the objective function and performs a substitution
of the quadratic terms (related to LA) with a linear approximation around
the solution of the previous step. It is therefore possible to carry out the
decomposition between the two areas and the optimization that each VCZ
has to solve is a small quadratic programming problem with limited data
exchange.
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To verify the effectiveness of the method, several numerical simulations
were carried out on a distribution network of twenty-four nodes with six DGs.
The precision of the solutions obtained with the proposed decentralized ap-
proach was evaluated and it was found to be very close to that obtained
with the centralized method. It has also been verified that the decentral-
ized approach with the APP method guarantees an improvement in terms
of voltage profile.

Finally, the problem of optimizing voltage profiles in energy distribution
networks has been tackled with a two-levels argorithm. After dividing the
network into VCZs with PNs, a coordinated approach on two levels with
different time scales was applied to the VOP. The first level evaluates the
setpoints of conventional VCDs by centralized optimization of PN voltages.
The second level adopts a decentralized approach which optimizes the PN
voltage in each VCZ by acting on the DER present in the same VCZ; VCZ
solutions are driven to the global optimum by a data exchange between PNs.

The application of the proposed VOP to the IEEE 123 bus test system
with DER was presented and the results highlighted the negative impact
of uncontrolled DGs in the presence of conventional VCDs and the benefits
introduced by DER optimization. The proposed method reduces the need
to add DERs as additional variables in the first level VOP, thus reducing
the complexity and dimensionality of the VOP in large distribution systems
and provides further flexibility to the distribution system operator by zone
control of the DERs for voltage regulation. In addition to that, the proposed
technique has economic advantages, due to the limited communication re-
quirements, without a significant loss of accuracy compared to centralized
approaches. From the analysis of the set-points and the voltage profiles it
can be seen that the proposed second level VOP significantly improves the
voltage profiles compared to those obtained in the absence of any action on
the DERs.
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Glossary

nh is the number of branches that compos the h− th feeder
Rtr is the resistance of the MV/LV transformer
Xeq is the equivalent impedance
Xtr is the reactance of the MV/LV transformer
Xsc is the short-circuit impedance of the MV node
VMV is the amplitude of the no-load voltage which is assumed to be fixed
PMV is the input active power
QMV is the input reactive power
Vtr is the voltage amplitude
Ptr is the outgoing active power
Qtr is the outgoing reactive power
Rj is the resistance of the equivalent circuit of a j-th branch of a LV distri-
bution system
Xj is the reactance of the equivalent circuit of a j-th branch of a LV distri-
bution system
Vj−1 is the voltage amplitude that characterize the branch at the node j− 1

Pj−1 is the input active power that characterize the branch at the node j−1

Qj−1 is the input reactive power that characterize the branch at the node
j − 1

Vj is the voltage amplitude at the receiving node j

Pj is the outgoing active power at the receiving node j

Qj is the reactive power at the receiving node j

PS,j is the active shunt power, variable external to the receiving node j

QS,j is the shunt reactive power, variable external to the receiving node j

PDER,j is the active power injected by the DER connected to the j−th node
QDER,j is the reactive power injected by the DER connected to the j − th

node
PL,j is the active power absorbed by the uncontrolled load connected to the
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j − th node, which are assumed to be constant
QL,j is the reactive power absorbed by the uncontrolled load connected to
the j − th node, which are assumed to be constant
xj is the vector (Pj , Qj , V

2
j )

T

Jj is the Jacobian matrix evaluated in the initial operating point
V 2
pni

the squared voltage amplitude at the PNs
V 2
pni,ref

reference values
aoltc tap position of the OLTC
asvrj tap positions of the SVRs
Qcbt reactive powers of the CBs
Γoltc
i , Γsvr

ij , Γcb
it are the sensitivities of the bus voltage at the i-th PN to,

respectively, the squared voltage at the terminal bus of the OLTC
∆V 2

oltc is the squared voltage at the terminal bus of the j-th SVR
∆V 2

svrj is the squared voltage to the reactive power injected by the t-th CB
∆a2oltc is the sensitivities of soltc

∆a2svrj is the sensitivities of ssvrj

y is the vector of the PN voltages
xc is the vector of set-points of the conventional voltage control devices
ui is the vector including all the variables, namely the PN nodal voltage and
the set-points of the unconventional voltage devices connected to the VCZ
c is the penalty parameter
λi are the Lagrange multipliers
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Acronyms

DG Distributed Generation
RES Renewable Energy Sources
DER Distributed Energy Risources
ICT Information and Communication Technologies
VCD Voltage Control Device
OLTC On-Load Tap Changer
SVR Step Voltage Regulator
CB Capacitor Bank
PV Photovoltaic System
EESS Electric Energy Storage System
PCC Point of Common Coupling
VCZ Voltage Control Zone
PN Pilot Node
C.C. Control Center
ZCC Zone Control Center
LV Low Voltage
MV Medium Voltage
HV High Voltage
VOP Voltage Optimization Problem
PF Power Flow
ORPF Optimal Linear Power Flow
MMs Lagrange Multipliers
LA Augmented Lagrangian
ADMM Alternate Direction Multiplier Method
APP Auxiliary Problem Principle
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