
When Local Optimization is Bad:

Learning What to (Not) Maximize in the Null-space

for Redundant Robot Control

Giacomo Golluccio, Paolo Di Lillo, Alessandro Marino, Gianluca Antonelli

Abstract— Redundancy in robot structures allows the imple-
mentation of control algorithms in which it is possible to add
secondary control objectives. Those are typically functions to be
minimized/maximized and projected onto the null-space of the
primary control objectives. As an example, typical metrics to
maximize are the robot manipulability or the distance from its
mechanical joint limits. Usually, designer’s heuristics is used to
decide which function eventually to optimize. This paper shows
that heuristics may lead to counter-intuitive results such as,
for example, reducing the dexterous workspace with respect
to, e.g., avoiding optimization at all. A learning algorithm is
proposed to allow the robot to dynamically select the function
to optimize in a way to increase the overall dexterous workspace
with respect to the static, heuristic choice. As a result, the robot
will be able to increase its dexterous workspace by selecting
the proper lower-priority task via the use of a neural network
trained during a proper supervised learning process. A 3-link
planar manipulator is used as numerical case study.

I. INTRODUCTION

Nowadays robot manipulators are more and more involved

in several fields, such as industrial, assistive and service

robotics for solving many different tasks. In classical in-

dustrial environments, all the tasks are defined a-priori, but

lately, a sort of intelligence is needed, due to the highly

dynamic environments in which these robots are more and

more commonly used. If robots have more Degrees of Free-

dom (DoFs) than the ones required by a task to perform, they

are defined as redundant and different redundancy resolution

strategies can be found in the literature to compute suitable

joint motions [1]. Thus, by exploiting the additional DoFs,

it is possible to perform multiple tasks at the same time,

e.g. maximization of manipulability, maximizing the distance

from the joint limits, and maximizing the distance from an

obstacle. A possible approach to implement this behavior is

seeing it as a cascade of Quadratic Programming (QP) prob-

lems solving them by resorting to the Hierarchical-Quadratic

Programming (HQP) framework [2]. Most often the tasks

are structured on defined priorities [3] and this approach

is referred to as strict task priority [4], [5], [6]. More in

detail, the aim of this approach is to minimize the task errors

satisfying a set of constraints. Differently, in literature soft

task priority approaches can also be found, where a weighted

combination of tasks solutions is computed [7].

Authors are with the Department of Electrical and Information En-
gineering of the University of Cassino and Southern Lazio, via Di
Biasio 43, 03043 Cassino (FR), Italy, {giacomo.golluccio,
pa.dilillo, al.marino, antonelli}@unicas.it

No optimization Manipulability

Joint Limits Union

Fig. 1. Workspaces according to different optimization policies generated
by a 3-link planar robot with initial configuration [π/4 π/3 π/3]T . Top
left: no optimization (red). Top right: optimization of the manipulability
(green). Bottom left: optimization of the distance from the joint limits (blue).
Bottom right: union of the workspaces.

Unfortunately, finding the best set of tasks for performing

a certain high-level mission, with both strict priorities and

soft priorities, pass through a time-consuming trial-and error

tuning procedure [8]. A possible solution might be changing

the tasks or their priorities dynamically during the robot

motion, but, as reported in [5], it might cause a disconti-

nuity in the control signals. For this reason, many efforts

have been devoted to the development of control algorithms

that allow inserting, removing, and swapping tasks without

discontinuity, as e.g. in [9].

The authors in [10] present a framework that handles a

set of tasks through stochastic parameters optimization using

Gaussian kernels for computing weights avoiding conflicts

between tasks, but there is no guarantee that the tasks

will be accomplished. A mixture of controllers for whole-

body motion generation via optimization of a derivative-free

stochastic algorithm is proposed in [11], generalizing w.r.t

new tasks through transfer policy learning. Again, in [12]

a dynamically-consistent generalized hierarchical control is

presented. For each pair of tasks, they choose between a

soft or a hard priority with one task having a null effect

on the other one. Otherwise, in [13] a method for learning

task hierarchies is proposed, where the authors show robot

potentiality to reproduce the learned priorities in new scenar-

ios. Similarly, in [14] an iterative algorithm for identifying



a stack of tasks is presented. Starting from observation of

the joint trajectories and predefined possible tasks executed

in parallel, the method gradually removes the non-necessary

tasks until a minimum set is identified. In [15], observing the

movement, the kinematic constraints are exploited in order

to learn the null space projection matrix.

Recently, the usage of Deep Learning in robotics is

growing up, achieving impressive results, e.g. AlphaGo [16]

or other complex and combinatorial problems [17], [18],

[19]. In [8] a Deep Reinforcement Learning (DRL) algorithm

for automatically assigning strict task priorities in a varying

environment is proposed. More precisely, they showed ca-

pabilities such as adaptation to new situations, generalizing

w.r.t unseen combinations of tasks, without retraining.

A classical approach to exploit the redundancy of a system

is to maximize a function and project the resulting velocities

onto the null space of the primary task. The choice of the

function to optimize as secondary control objective affects

the reachable workspace of the robot. As an illustrative

example, Fig. 1 reports the three workspaces of a 3-link

planar manipulator obtained by not maximizing any function

and maximizing the distance from the joint limits and the

manipulability (more details in the remainder of the paper). It

is worth highlighting that the union of the three workspaces

is actually larger than the three taken separately, proving

that changing the function to optimize depending on the

operational conditions increases the workspace dimension.

In this work we propose a Deep Learning approach

capable of providing in output the function to optimize (if

necessary), starting from an initial configuration in the joint

space and assigning a desired configuration in the cartesian

space for the end-effector. The architecture is validated with

numerical simulations on a simple 3-link robot arm. It is

shown that there is an enlargement of the workspace with

respect to the optimization of a single function.

II. MATHEMATICAL BACKGROUND

Let us consider a generic n joint manipulator with q ∈ R
n

representing the joint position vector. The end-effector pose

is denoted by η =
[

pT
ee Q

T
ee

]T
, where pee ∈ IR3 is the posi-

tion and Qee the unit quaternion representing the orientation;

the end-effector velocity is vee =
[

ṗT

ee ωT

ee

]T

∈ IR6, being

ṗee ∈ IR3 and ωee ∈ IR3 the linear and angular velocities,

respectively. The relationship between the joint velocities

q̇ ∈ R
n and the end-effector linear ṗee ∈ R

3 and angular

velocities ωee ∈ R
3 can be expressed as:

ṗee = JP q̇, (1)

ωee = JO q̇ , (2)

where JP is the 3×n matrix that maps the joint velocities

to the linear velocity of the end-effector, whereas JO is the

3 × n matrix that maps the joint velocities to the angular

velocity of the end-effector. The full geometric Jacobian

matrix J ∈ R
6×n is obtained by stacking the two matrices

defined above, and Eq. (1) and Eq. (2) can be expressed in

a more compact form as:

vee =

[

ṗee

ωee

]

= Jq̇ . (3)

Given a certain desired position pd and desired quaternion

Qd for the end-effector, the joint velocities that make the

robot fulfill the end-effector pose task can be computed

by resorting to the Closed-Loop Inverse Kinematics (CLIK)

algorithm [20]:

q̇ = J†

(

[

ṗd

ωd

]

+K

[

ep

eo

]

)

, (4)

where ep = pd − p is the end-effector position error,

eo = Qd ∗ Q
−1 is the orientation error expressed in

terms of quaternion error, ṗd is a feed-forward desired end-

effector linear velocity, ωd is a feed-forward end-effector

angular velocity, K ∈ IR6×6 is a positive-definite gain matrix

and J† is the Moore-Pensore pseudoinverse of the Jacobian

matrix J . The differential kinematics can be characterized

in terms of the range R(J) and null space N (J) of the

Jacobian matrix. When n is greater than the number of DoFs

strictly needed for the accomplishment of a certain task, the

manipulator is said to be redundant with respect to that task,

and the additional DoFs can be exploited to perform other

control objectives simultaneously. In order to resolve the

possible conflicts that might arise between the two tasks,

a usual approach is to define a hierarchy, i.e. giving more

importance to one task (which is called primary) over the

other one (called secondary). The objective is to filter out the

velocity contribution of the secondary task that would affect

the execution of the primary one; in this way, the primary

task is executed perfectly as long as it remains feasible, while

the secondary one is executed at best. This is implemented

by projecting the velocity contribution of the secondary task

in the null space of the Jacobian matrix of the primary one,

achieving the following solution:

q̇ = J†

(

[

ṗd

ωd

]

+K

[

ep

eo

]

)

+Nq̇s , (5)

where N is the null-space projection matrix of Jacobian J

computed as N = I − J†J , and q̇s is an additional term

related to the secondary task that can be expressed as:

q̇s = k0

(

∂w(q)

∂q

)T

, (6)

where k0 is a scalar gain and w(q) is a function to

optimize. This function is usually designed in order to

maximize some metrics generating internal motions in the

structure of the manipulator, i.e. without changing the end-

effector trajectory.

III. MOTIVATION AND PROBLEM STATEMENT

Typical metrics to maximize in Eq. (6) are the distance

from the joint limits and the manipulability of the arm.

Indeed, on the one hand, it is desirable to minimize the



occurrence of joint limit violations, in order to guarantee the

feasibility of the motion; on the other hand, it is desirable

to maximize the manipulability of the arm to reduce the

occurrence of singular configurations and the well-known

undesirable effect that it has on the inverse kinematics solu-

tion [21]. It is worth noticing that optimizing these metrics

employing Eq. (6) does not guarantee that the manipulator

would not hit a joint limit or reach singular configurations. In

order to do that, the control objectives should be considered

at a higher priority with respect to the end-effector pose task,

or, in other terms, as constraints in HQP formulations.

A possible expression of the function w(q) that represents

the measure of manipulability is [22]:

wm(q) =

√

det
(

JJT
)

, (7)

while for representing the distance from joint limits, the

following expression can be adopted:

wjl(q) = −
1

2n

n
∑

i=0

(

qi − qi
qiM − qim

)2

, (8)

where qiM and qim are the upper and lower limits of the i-th
joint respectively, qi is the i-th joint position and qi is the

midpoint between the maximum and the minimum limits.

The final goal of adding a secondary task is to increase

the dexterous workspace of the robot, but depending on the

chosen function to maximize, the resulting workspace might

be different. Currently, the choice of the specific function

to optimize is completely left to the designer, who usually

employs some kind of heuristics to select a function to

maximize that guarantees the best performance. Additionally,

in traditional approaches, the function to optimize does not

change during the execution, as it is chosen as a design

parameter that remains static during the robot operations.

This approach represents a huge limitation that decreases

the performance of the robot: given a certain initial joint

configuration and a certain desired end-effector pose, the

function to optimize plays a key role in discriminating

whether the robot will be able to eventually reach it or not.

Indeed, if the end-effector trajectory would make some of the

joints reach the proximity of a limit, it might be convenient

to maximize the distance from the joint limits; on the other

hand, if it would make the robot reach a close-to-singular

joint configuration, the best choice would be to maximize

the manipulability of the arm. Interestingly, there can be also

situations in which maximizing the distance from the joint

limits might make the robot reach a singular configuration

during the trajectory, while maximizing the manipulability

might make the robot hit a joint limit. In this case, as shown

in the remainder of the paper, the best choice might even be

to not optimize any function at all, that is employing Eq. (4)

instead of Eq. (5).

For these reasons, the problem that we address in this

paper is to develop a method that allows to automatically

choose the function to optimize depending on the initial joint

configuration of the manipulator and the desired end-effector

pose. More in detail, we consider a regulation problem, in

which the desired pose is constant thus ṗd and ωd are

both equal to zero in Eqs. (4) and (5). In the remainder

of the paper, as a demonstration example three different

possibilities are considered: 1) do not optimize anything, 2)

maximize the manipulability or 3) maximize the distance

from the joint limits. However, it is worth noticing that no

constraint on the number of functions to optimize is set by

the proposed approach.

The aim is to show that, using the proposed method, an en-

largement of the workspace of the robot can be appreciated.

IV. PROPOSED SOLUTION

Considering p possible control algorithms to employ

A1,A2 . . . ,Ap ∈ A, and a set of constraints C expressed

in terms of minimum and/or maximum values that functions

w1(q), w2(q) . . . , wh(q) should have, we define a label l as:

l =
[

l1 l2 . . . lp
]T

i = 1, 2, . . . , p , (9)

where l1, l2 . . . lp ∈ {0, 1} are values that represent the

violation of at least one of the constraints in C employing

the algorithms in A: the components of the label assume

the value 0 if there is a constraint violation in any instant

during the trajectory execution and 1 if there is not. Given

the definition of the labels, there are 2p possible values that

the labels can assume. From a learning perspective, it could

be handled as a classification problem that maps these labels

in 2p classes ci (i = 1, 2, . . . , 2p).

For the case study taken into account in the validation

section, we have considered three possible algorithms: A1

is represented by Eq. (4), that is without optimizing any

function; A2 is as in Eq. (6) optimizing wm as in Eq. (7);

A3 is Eq. (6) optimizing wjl as in Eq. (8). Regarding the

constraints, we consider a minimum value for the manipula-

bility, as well as minimum and maximum values for the joint

positions. Taking into account the label l, if l1 = 1, it means

that employing A1 none of the constraints would be violated;

if l1 = 0, it means that at least one of the two constraints

would be violated during the trajectory. The same meaning

has to be considered with the components l2, associated with

the employment of A2, and l3, associated with A3. Table I

resumes the 8 identified classes associating a color for the

purpose of visualization.

TABLE I

MAPPING FOR LABELLING: 0 IS RELATED TO THE VIOLATION OF AT

LEAST ONE OF THE CONSTRAINTS, 1 IF THERE IS NO VIOLATION.

Class: c A1: l1 A2: l2 A3 : l3 Color

c1 0 0 0
c2 0 0 1
c3 0 1 0
c4 0 1 1
c5 1 0 0
c6 1 0 1
c7 1 1 0
c8 1 1 1

The neural network that we have designed for classifying

what function to optimize in the null space is a fully con-

nected network, as shown in Fig. 2. The input is represented



x

P (y1|x)

P (y2|x)

...

P (ym|x)

Fig. 2. Architecture of fully connected neural network: x is the input and
P (y|x) are the probabilities in output.

by the vector:

x =

[

q
0

pee,d

]

, (10)

where q
0
∈ R

n is the vector of initial joint configuration and

pee,d ∈ R
3 is the desired position of the end-effector. It is

worth noticing that, in general, also the desired orientation

Qd can be seamlessly included in the input vector. The

neural network is composed of j = 4 layers with Xavier

initialization that works on the tanh activation function.

More in detail, the neurons of a network are composed of

parameters named weights used to calculate a weighted sum

of the inputs. The learning process of the neural network

consists of the minimization of an error function through

an optimization algorithm, namely, a Stochastic Gradient

Descent (SGD), which modifies the network weights incre-

mentally. The optimization starts from an initial point in

the space of possible weight values. The above-mentioned

Xavier approach computes the initial configuration W of

random number as follows:

W j ∼ N (µ, σ2 =
1

nj−1
) , (11)

where nl−1 is the number of neurons at layer l−1. In the last

layer, an activation function called softmax is often applied

in multi-class learning problems where a set of features can

be related to one-of-K class. The output of the softmax

describes the probability P (y = ci|x) of the neural network

that a particular sample belongs to a certain class. From a

mathematical perspective, it is defined as:

fsoftmax(yi) =
eyi

∑

k=1
eyk

. (12)

In combination with the fsoftmax activation function, the

Negative-Log Likelihood (NLL) is used in this paper. It uses

a negative connotation since the probabilities (or likelihoods)

vary between zero and one, and the logarithms of values in

this range are negative.

V. VALIDATION

The proposed approach has been validated through nu-

merical simulations taking into account a simple 3-link

planar manipulator, with the length of the three links equal

to 1m each. Upper and lower limits of ±120◦ have been

considered on all three joints, while a lower threshold for

the manipulability of 0.1 has been set. The constraints are

considered violated if the values of the joint limits and

manipulability exceed the imposed thresholds during the

motion of the robot. The input vector x of the DNN in

Eq. (10) is composed of the vector containing the initial

position of the three joints and the desired 2D end-effector

position. The robot and its workspace without the joint limits

are represented in Fig. 3. The entire architecture is validated

in MATLAB environment for the dataset generation and

Python, using the PyTorch framework for training the model

using CUDA on a GPU. More in detail, all the software

has been run on a desktop PC with CPU Intel(R) Core(TM)

i9-9900KF 3.60GHz and GPU GeForce RTX 2070 Super

equipped with Ubuntu 20.04 and MATLAB 2020b.

A. Dataset Generation

The dataset consists of a set of instances for each class

obtained randomly selecting x in Eq. (10), such as q
0

meets

the joint limits, and the desired end-effector positions pee,d

is in the circle of radius 3m.

xm

ym

xM

yM

Fig. 3. 3-link planar robot and its workspace without the joint limits.

Furthermore, a common the dataset is split into three parts

that are training, validation and test. The first ones are used

to train the model, whereas the last one is a portion of data

used for testing the performance.

B. Results

Figure 4 shows the entire robot workspace divided

into regions with different colors (according to Table I),

starting with a constant initial joint configuration q
0

=
[π/4 π/3 π/3]

T
rad. Each point of the figure is asso-

ciated with a label that represents the functions to optimize

to reach that point.

Looking at the figure, it is possible to notice that the

distance among some of the regions is very small. This

means that there might be a classification error. More in

detail, in the range x ≈ [−0.05, 0.05]T and y ≈ [0.0, 0.2]T

or x ≈ [−2.0,−1.55]T and y ≈ [−0.8,−0.3]T the class

c1 might be wrongly classified as c2; in x ≈ [−0.05, 0.2]T



-4 -2 0 2 4
-4

-2

0

2

4

x

y

c1c2c3

c4c5c6

c7c8

Fig. 4. Sampled workspace of the 3-link robot arm for the initial
configuration q0 = [π/4 π/3 π/3]T with a robot base position in the
origin.

and y ≈ [0.05, 0.3]T or x ≈ [−0.9,−0.3]T and y ≈
[−0.5,−0.1]T the class c3 might be classified as c6 or

c7; in x ≈ [−1.4,−1.2]T and y ≈ [−0.85,−0.75]T the

class c5 might be classified as c2; in x ≈ [−0.3, 0.1]T and

y ≈ [−0.3,−0.3]T the class c6 might be classified as c3 or

c4. Finally, classes c7 and c8 might be wrongly classified in

the range where x ≈ [−1.2,−0.3]T and y ≈ [−0.5, 0.1]T .

These considerations are consistent with the confusion matrix

shown in Fig. 5; indeed, it is possible to notice that the

model is capable of detecting and correctly classifying which

algorithm to select among the ones in the set A in order to

meet the constraints in C reaching the 94% on the test set.

3.1%

7.4%

3.0% 6.1%

7.4% 3.7%

14.3%

4.0%

96.9%

100.0%

88.9%

100.0%

92.6%

90.9%

96.0%

85.7%

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

T
ru

e
C

la
ss

Predicted Class

Fig. 5. Confusion Matrix normalized for row. The diagonal elements
represent the correctly classified classes, whereas the other values represent
the wrongly classified ones.

As an illustrative example of c4, Fig. 6 shows the evolution

of the joint positions and the manipulability with their

thresholds employing the three abovementioned algorithms.

It is worth noticing the violation of the upper limit of the

second joint using A1, whereas A2 and A3 do not cause any

constraint violation.

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1
0

1

2

3

4

t[s] t[s]

t[s] t[s]
q 1

[r
ad

]

q 2
[r

ad
]

q 3
[r

ad
]

w
m

No Opt.

Manipulability

Joint Limits

Fig. 6. Top-left: evolution of the first joint position using and their joint
limits (dotted line). Top-right: evolution of the second joint position and
their joint limits (dotted line). Bottom-right evolution of the third joint
position and their joint limits (dotted line). Bottom-right: evolution of the
manipulability functionals and their threshold (dotted line). The color of the
plots are related to the algorithms A1,A2 and A3.

It is worth highlighting that the union of the three

workspaces is actually larger than the three taken separately,

proving that changing dynamically the function to optimize

depending on the initial joint configuration and the desired

and-effector pose increases the workspace dimension. This

is quantified in Table II, which reports the areas of the

workspaces normalized with respect to the union. Analyzing

the results, it is possible to notice that using algorithm A1

(i.e., not optimizing any function) there is a loss of ≈ 20%
in terms of workspace, whereas by maximizing only the

manipulability there is a loss of 7% and maximizing only

the distance from the joint limits the workspace is reduced

by 18%.

TABLE II

AREA OF THE WORKSPACES OBTAINED WITH THE THREE ALGORITHMS

AND THEIR UNION

Region Color Classes Area

No optimization c5, c6, c7, c8 0.80
Manipulability c3, c4, c7, c8 0.93
Joints limits c2, c4, c6, c8 0.82
Union + + c1, c2 . . . c8 1.00

It is important to observe that the difference in terms of

workspace is strictly related to the initial joint configuration

of the robot. As evidence, changing the sign of the last

joint at the beginning of the simulation, i.e. by setting

q
0
= [π/4 π/3 − π/3]T rad, the obtained workspaces



are significantly different, and it causes a shift upwards of

regions c3, c4, as it is shown in Fig. 7.

-4 -2 0 2 4
-4

-2

0

2

4

x

y

c1c2c3

c4c5c6

c7c8

Fig. 7. Sampled workspace of the 3-link robot arm for the initial
configuration q0 = [π/4 π/3 − π/3]T with a robot base position
in the origin.

VI. CONCLUSION

A Supervised Learning process to properly handle opti-

mization tasks has been investigated in this paper. A simple

case study consisting of a 3-link planar manipulator al-

ready exhibits interesting properties and improvements under

the proposed approach. Future research directions include:

(i) investigation of the role of the optimization gains in

the formation of the regions; (ii) introduction of a proper

metric instead of the binary classification 0/1 indicating

(un)reachability; (iii) extension to full dimensional robotic

structures; and (iv) a comparison using RGB images and 3D

voxel data representation for the robot workspace.

VII. ACKNOWLEDGEMENT

The authors declare that this work was supported by Dipar-

timento di Eccellenza granted to DIEI Department, Univer-

sity of Cassino and Southern Lazio, by H2020-ICT project

CANOPIES (Grant Agreement N. 101016906), by POR FSE

LAZIO 2014-2020, Project DE G06374/2021 and by Project

“Ecosistema dell’innovazione - Rome Technopole” financed

by EU in NextGenerationEU plan through MUR Decree n.

1051 23.06.2022 - CUP H33C22000420001.

REFERENCES

[1] M. D. Fiore, G. Meli, A. Ziese, B. Siciliano, and C. Natale, “A general
framework for hierarchical redundancy resolution under arbitrary
constraints,” IEEE Transactions on Robotics, pp. 1–20, 2023.

[2] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis,
“Opensot: a whole-body control library for the compliant humanoid
robot coman,” in 2015 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2015, pp. 6248–6253.

[3] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” The International Journal

of Robotics Research, vol. 6, no. 2, pp. 3–15, 1987.

[4] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized motion–
force control of constrained fully-actuated robots:“task space inverse
dynamics”,” Robotics and Autonomous Systems, vol. 63, pp. 150–157,
2015.

[5] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space
projections for redundant, torque-controlled robots,” The International

Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.
[6] L. Penco, E. M. Hoffman, V. Modugno, W. Gomes, J.-B. Mouret,

and S. Ivaldi, “Learning robust task priorities and gains for control
of redundant robots,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2626–2633, 2020.

[7] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 1283–1290.

[8] M. Karimi and M. Ahmadi, “A reinforcement learning approach in
assignment of task priorities in kinematic control of redundant robots,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 850–857,
2021.

[9] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Continuous
task transition approach for robot controller based on hierarchical
quadratic programming,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1603–1610, 2019.

[10] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task pri-
oritization in whole-body control,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 3944–3949.

[11] N. Dehio, R. F. Reinhart, and J. J. Steil, “Multiple task optimization
with a mixture of controllers for motion generation,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 6416–6421.

[12] N. Dehio and J. J. Steil, “Dynamically-consistent generalized hier-
archical control,” in 2019 International Conference on Robotics and

Automation (ICRA). IEEE, 2019, pp. 1141–1147.
[13] J. Silvério, S. Calinon, L. Rozo, and D. G. Caldwell, “Learning

task priorities from demonstrations,” IEEE Transactions on Robotics,
vol. 35, no. 1, pp. 78–94, 2018.

[14] S. Hak, N. Mansard, O. Stasse, and J. P. Laumond, “Reverse control
for humanoid robot task recognition,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 6, pp. 1524–
1537, 2012.

[15] H.-C. Lin, M. Howard, and S. Vijayakumar, “Learning null space
projections,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2015, pp. 2613–2619.
[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[17] G. Golluccio, D. Di Vito, A. Marino, A. Bria, and G. Antonelli, “Task-
motion planning via tree-based q-learning approach for robotic object
displacement in cluttered spaces,” in Proceedings of the 18th Int.

Conf. on Informatics in Control, Automation and Robotics - ICINCO,
INSTICC. SciTePress, 2021, pp. 130–137.

[18] G. Golluccio, D. Di Vito, A. Marino, and G. Antonelli, “Robotic
weight-based object relocation in clutter via tree-based q-learning
approach using breadth and depth search techniques,” in 2021 20th

Int. Conf. on Advanced Robotics (ICAR). IEEE, 2021, pp. 676–681.
[19] G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, and G. Antonelli,

“Objects relocation in clutter with robot manipulators via tree-based
q-learning algorithm: Analysis and experiments,” Journal of Intelligent

& Robotic Systems, vol. 106, no. 2, pp. 1–20, 2022.
[20] S. Chiaverini, “Singularity-robust task-priority redundancy resolution

for real-time kinematic control of robot manipulators,” IEEE Transac-

tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.
[21] D. Di Vito, C. Natale, and G. Antonelli, “A comparison of damped

least squares algorithms for inverse kinematics of robot manipulators,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 6869–6874, 2017.

[22] T. Yoshikawa, “Manipulability of robotic mechanisms,” The Interna-

tional Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.


	Introduction
	Mathematical Background
	Motivation and problem statement
	Proposed Solution
	Validation
	Dataset Generation
	Results

	Conclusion
	Acknowledgement
	References

