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absorbers by Timoshenko Beam Theory

M. Cavacecea,∗ and L. Vitab

a Department of Structural Engineering, University of Cassino, 03043 Cassino,Italy
b Department of Mechanical Engineering, University of Rome ”Tor Vergata”, 00133 Rome, Italy

Professor Bruno Piombo has shown us that the passion for the research and for teaching is a neverending gift.

Abstract. A double–ended cantilever beam as a distributed parameter dynamic vibration absorber has
been applied to a single–degree–of–freedom system subjected to harmonic forces.
In this investigation, the beam has been analyzed under the well known model of Timoshenko and the
computation of best parameters is based on the Chebyshev’s optimality criterion.

This is somewhat novel in the field since:

• the design of cantilever beams as dynamic vibration absorbers is usually made under the hypotheses
of the Euler–Bernoulli theory;

• it is the first time that the Chebyshev’s criterion is appliedto the design of such devices.

For a ready use of the results herein presented, design charts allow a quick choice of optimal parameters
such as tuning ratio and mass ratio.

1 Introduction

The classical dynamic vibrations absorber is made up of two masses. The first one is subjected to
an harmonic load which lead to a vibrational motion of this mass, the second mass is connected to
the main mass by means of an spring element. Thus choosing properly the weight of the second
mass and the spring stiffness, the vibration amplitude of the main mass could be reduced and,
under ideal conditions, also cancelled [4, 12].

In fact when an absorbing mass-spring system is attached to the main mass and the resonance
of the absorber is tuned to match that of the main mass, the motion of the main mass is reduced
to zero at its resonance frequency (Figure 1).

The test case proposed in this paper concerns a double–endedcantilever beam used as a dy-
namic vibration absorber [8]. As a consequence the parameters to be set in order to reduce the
vibrations of the main mass are the intrinsic elasticity of the beam and its weight. For a more
faithful modeling of the beam behavior, the authors have deduced the dynamic equations of the
system under analyisis by means of the Timoshenko’s model [7]. These equations have been used
under the conditions set by the Chebyshev’s theorem in orderto define the optimal features of
the beam (e.g. cross section area, length, thickness) [7]. The results have been compared with
the ones obtained following the Euler–Bernoulli’s model ofthe beam as reported by Jacquot and
Foster [9].
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Figure 1: Plots of the mass displacements
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Figure 2: Scheme of the dynamic vibrations absorber

2 System modeling

The undamped system, shown in Figure 2, is composed of a spring–supported lumped mass which
is free to move only vertically.

Attached to the mass there is the double–ended cantilever beam as shown. Separating the
system into three parts as shown in Figure 3, the method of superposition is applied to examine
the coupling between the subsystems.

The equation of motion for the main massM is

M
δ2w

δt2
+Kw = P0e

jωt + 2V0e
jωt , (1)

where theV0ejωt term is the yet unknown vibration absorber force for a singlebeam on the main
mass. This force can be obtained as the shear force at the rootof a displacement–excited cantilever
beam. The governing equation for the cantilever beam, underthe assumption of Timoshenko
bending theory, is

EIn
δ4y

δx4
+Aρ

δ2y

δt2
− ρIn

(

1 +
E

χG

)

δ4y

δx2δt2
+
ρ2In
χG

δ4y

δt4
= 0 (2)
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Figure 3: Freebody diagram of the system

with the following boundary conditions:

y (0, t) =W0e
jωt (3a)

ϕ (0, t) = 0 (3b)

δϕ (L, t)

δx
= 0 (3c)

δy (L, t)

δx
− ϕ(L, t) = 0 (3d)

In order to obtain a steady–state solution to Eq. (2), we assume a solution of the form

Y (x, t) = Y (x) ejωt (4)

which will yield the spatial complex amplitude distribution Y (x). The shear force amplitude at
the root of the cantilever is then

V (x, t) = χAG

(

ψ − δy

δx

)

. (5)

The Eq. (2), subjected to boundary conditions (3), using expression (5) gives a shear force
amplitude of

V0 = (U1 + U2)W0 (6)

with

U1 =
AT 4

[

cos (α1L) sinh (α2L)α1T
2 − sin (α1L) cosh (α2L)α2T

2
] (

α2
1 + α2

2

)

ro3λ6Ω6
1

(

α2
2
α2
1
χ2G2Q

)

whereB1 =
(

α2
1 + α2

2

)

ρ3λ6Ω6
1,

and

U2 =
Aρ2T 4

[

− cos (α1L) sinh (α2L)α
3
1 − sin (α1L) cosh (α2L)α

3
2

] (

α2
1 + α2

2

)

λ4Ω4
1

(

α2
1
α2
2
χGQ

)

whereB2 =
(

α2
1 + α2

2

)

ρ4Ω4
1

and
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Q = Q1 +Q2 +Q3 (7)

Q1 =− T 6Ω6
1λ

6ρ3
(

χ3G3α2
1
α2
2

) [−α2
2 sin (α1L) sinh (α2L)− 2α1α2

+ α2
1 sin (α1L) sinh (α2L) + 2α1α2 cos (α1L) cosh (α2L)] (8)

and

Q2 =
T 4Ω4

1λ
4ρ2

(

α2
1
α2
2
χ2G2

) [2α1α
3
2 cos (α1L) cosh (α2L) + 2α3

1α2

− 2α1α
3
2 − α4

1 sin (α1L) sinh (α2L)− 2α3
1α2 cos (α1L) cosh (α2L)

+ 2α2
1α

2
2 sin (α1L) sinh (α2L)− α4

2 sin (α1L) sinh (α2L)] (9)

and

Q3 =− ρT 2Ω2
1λ

2

α2
1
α2
2
χG

[α1α
5
2 cos (α1L) cosh (α2L)

− sin (α1L)α
4
1α

2
2 sinh (α2L) + α2

1 sin (α1L) sinh (α2L)α
4
2

+ α2α
5
1 cos (α1L) cosh (α2L) + 2α3

1α
3
2] . (10)

The steady–state solution to (1) is

w (x, t) =W0e
jωt (11)

whereW0 is the complex amplitude, and the following equation must hold

(

−λ2 + 1
)

W0 −
P0

k
− 2V0

k
= 0 . (12)

Note that the second forcing term on the right side of (11) is afunction of the complex vibra-
tory amplitude of the massW0. Solving equation (12) for complex amplitudeW0 as a function of
the external forcing function amplitudeP0 one obtains

W0 =
C

D
(13)

and

C = −P0µα
2
1α

2
2χ

2G2Q

2
(14)

where

D =ρAΩ2
1[
(

Lα2
2Qα

2
1λ

2 − α2
2Qα

2
1L

)

G2χ2+

[− cos (α1L) sinh (α2L)α
5
1 − cos (α1L) sinh (α2L)α

3
1α

2
2

− sin (α1L) cosh (α2L)α
3
2α

2
1 − sin (α1L) cosh (α2L)α

5
2]T

4Ω2
1µρλ

4Gχ

+ [cos (α1L) sinh (α2L)α
3
1 + cos (α1L) sinh (α2L)α1α

2
2+

− sin (α1L) cosh (α2L)α2α
2
1 − sin (α1L) cosh (α2L)α

3
2]T

6Ω4
1µρ

2λ6] (15)
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In order to get maximum benefit from the present analysis somenondimensional quantities
are introduced. The tuning ratioT is the ratio of the first natural frequency of the cantilever to the
natural frequency of the main lumped parameter system

T =
ωa

Ω1

(16)

The mass ratioµ is the ratio of the total absorber mass to that of massM

µ =
2ρAL

M
(17)

The frequency ratioλ is the ratio of the frequency to the natural frequency of thek − M
combination of

λ =
ω

Ω1

(18)

The static deflection of the main system is defined to be

Wst =
P0

k
(19)

The dimensionless frequency responce function is then

γ =

∣

∣

∣

∣

W0

Wst

∣

∣

∣

∣

=

∣

∣

∣

∣

F

H

∣

∣

∣

∣

(20)

where
F = α2

1α
2
2χ

2G2QL (21)

and

H =
(

Lα2
2Qα

2
1λ

2 − α2
2Qα

2
1L

)

G2χ2 + T 4Ω2
1µρλ

4Gχ

[− cos (α1L) sinh (α2L)α
5
1 − cos (α1L) sinh (α2L)α

3
1α

2
2

− sin (α1L) cosh (α2L)α
3
2α

2
1 − sin (α1L) cosh (α2L)α

5
2]

+ T 6Ω4
1µρ

2λ6[cos (α1L) sinh (α2L)α
3
1 + cos (α1L) sinh (α2L)α1α

2
2

− sin (α1L) cosh (α2L)α2α
2
1 − sin (α1L) cosh (α2L)α

3
2] (22)

with

α1 =
1

2
λTΩ1

√
2

√

ρ

E

√

√

√

√

E

χG
+ 1 +

√

(

E

χG
− 1

)2

+
4AE

ρλ2T 2Ω2
1
In

(23)

and

α2 =
1

2
λTΩ1

√
2

√

ρ

E

√

√

√

√− E

χG
+ 1 +

√

(

E

χG
− 1

)2

+
4AE

ρλ2T 2Ω2
1
In

(24)

3 Chebyshev’s theorem

In this section are recalled the main proposition of the Chebychev’s theorem for the search of
optimal parameters [9]. Letf (x) be a continuous function in[a, b] andp (x) an approaching
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polynomial belonging to the classPn of polynomials with degree less or equal ton. As specified
by Chebyshev’s theorem, the best uniform approximation is attained when the condition

min max |f (x)− p (x)| (25)

is fulfilled. The solution to the minimization problem stated by (1) is unique and it can be found
considering the following theorem: Letf (x) be a continuous function in[a, b] andp (x) the best
uniform approaching polynomial of degreen. Moreover, let

En = max |f (x)− p (x)| (26)

and
ǫ (x) = f (x)− p (x) . (27)

There are at least(n+ 2) pointsa ≤ x1 < x2 . . . < xn+2 ≤ bwhereǫ (x) assumes the values
±En and with alternating signs:

ǫ (xi) = ±En (28)

with i = 1, 2, . . . , n + 2 and
ǫ (xi) = −ǫ (xi+1) (29)

with i = 1, 2, . . . , n + 1. Hence the best uniform approaching function is completelycharacter-
ized by the property of equioscillation at(n+ 2) points. This property is the basis of numerical
schemes for computing the approximant polynomial. The Chebyshev’s theorem allows us to de-
termine the optimal values ofµ andT such that the curveγ, versusλ, has two peak values with
minimum distance from a straight lineL1, whereL1 is initially unknown. The following system
of non–linear algebraic equations can be written

(

δγ

δλ

)

λ=λ1

= 0 (30a)

(

δγ

δλ

)

λ=λ2

= 0 (30b)

(

δγ

δλ

)

λ=λ3

= 0 (30c)

−γ (λ1) + L1 +∆ = 0 (30d)

−γ (λ2) + L1 −∆ = 0 (30e)

−γ (λ3) + L1 +∆ = 0 (30f)

where∆ is the maximum deviation of the responce curve from the valueL1. A curve attains a
maximum or a minimum at frequency ratiosλ1, λ2 andλ3. Therefore, system (30) is composed
of six equations with seven unknown variablesλ1, λ2, λ3, µ, T , L1 and∆. Solving the system
of non–linear equation for different and prescribed valuesof µ, it can be computed the numerical
values of the optimal parameters.
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4 Numerical example

Considering a system where the lenght of the beam is kept constant, the optimized frequency
response function of the main mass is obtained making use of the design charts presented in
Figures 4 and 5. In particular, in Figure 4 is shown the graph which relates the optimal values
of mass ratio as a function of the main massM . In Figure 5 is reported the graph of the optimal
tuning ratioT as a function ofµopt. Thus once known the value ofµopt from the previous step, is
possible to obtain also the optimal value of tuning ratioT . Using the equations (20) with both of
the optimal values previously obtained, it is possible to define the final behaviour of the frequency
response function of the main mass.

20 30 40 50 60 70 80

0,10

0,15

0,20

0,25

0,30

µopt

M

Figure 4: Optimal values of mass ratio

0,05 0,10 0,15 0,20 0,25 0,30
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0,90
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1,00

1,05

1,10

Topt

µopt

Figure 5: Optimal tuning ratio

The procedure previously discussed has been applied to a main mass of a primary system
whose vibration needs to be controlled. The value of main mass isM = 42.243 Kg and the
vibration absorber is a uniform beam with the following pertinent specifications:L = 1 m,
A = 5 · 10−4 m2, E = 2 · 1011 N/m2, G = 0.808 · 1011 N/m2, ρ = 8000 Kg/m3, In = 10−9

m4 andχ = 0.833. The optimal solution for the Timoshenko beam theory isTopt = 0.968 and
µopt = 0.185.

In conclusion, the main advantages in using the present technique are:

• the two peacks of the main mass maximum displacement value are levelled;
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• the use of Timoshenko beam theory guarantee a more faithful modeling of the beam dy-
namic behavior.

The optimal parameters, using the Euler–Bernoulli beam theory, areTopt = 0.865 andµopt =
0.2. These are not very far from the optimal solution obtained bymeans of Timoshenko theory.
Figure 6 refers to a comparison between Euler–Bernoulli beam theory and Timoshenko beam
theory with the computed optimal parametersTopt = 0.968 andµopt = 0.185.

0,0 0,5 1,0 1,5 2,0
0
1
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5
6
7
8
9

10
11
12
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14
15
16

 Timoshenko
 Euler - Bernoulli

λ

γ

Figure 6: Comparison between Timoshenko and Euler-Bernoulli theory

5 Conclusions

The authors have proposed a new method for the optimal designof a double–ended cantilever
beam as a dynamic vibration absorber for a lumped–parametersingle degree–of–freedom vibra-
tion system. The governing equation for the cantilever beamwas developed under the assumption
of Timoshenko bending theory. The Chebyshev’s criterion was applied and the design charts
for optimal beam–type absorber prepared. The results should be useful to designers of machine
elements and structural systems.
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NOMENCLATURE
A area
E Young’s modulus
G shear modulus
In area moment of inertia
k stiffness coefficient
L lenght
L1 straight line
M main mass
P0 external forcing function amplitude
Q solving equation of the system
q̇, v̇ generalized velocities
T tuning ratio
V shear force
W0 complex amplitude
Wst static deflection of the main system
Y spatial complex amplitude distribution
λ frequency ratio
µ mass ratio
ρ mass density
χ shear factor
Ω1 natural frequency of the k–M combination
ω input frequency
ωa first natural frequency of the cantilever
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