We show that the electromagnetic coupling at the nanoscale may be accompanied by another coupling mechanism, related to quantum entanglement. Consequently, a combined “electromagnetic-quantum” coupling is created, which stipulates long-distance and long-living interactions in electric circuits. Manifestation of this effect in electromagnetic compatibility (EMC) is discussed. An efficient theoretical framework for EMC analysis in nanoelectronics is developed based on the generalized theory of electric circuits. It is shown that the action of quantum entanglement is equivalent to an addition of the supplementary elements in electric circuit with the effective admittances defined as general susceptibilities that can be calculated using the Kubotechnique.

Quantum Entanglement in Electric Circuits: from Anomalous Crosstalk to Electromagnetic Compatibility in Nano-Electronics

MAFFUCCI, Antonio
2016-01-01

Abstract

We show that the electromagnetic coupling at the nanoscale may be accompanied by another coupling mechanism, related to quantum entanglement. Consequently, a combined “electromagnetic-quantum” coupling is created, which stipulates long-distance and long-living interactions in electric circuits. Manifestation of this effect in electromagnetic compatibility (EMC) is discussed. An efficient theoretical framework for EMC analysis in nanoelectronics is developed based on the generalized theory of electric circuits. It is shown that the action of quantum entanglement is equivalent to an addition of the supplementary elements in electric circuit with the effective admittances defined as general susceptibilities that can be calculated using the Kubotechnique.
2016
9781509021529
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/57088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact