Until few years ago, many studies of Alzheimer's disease investigated the effects of this syndrome in the central nervous system. Only recently, the detection of amyloid beta peptide (Aβ) in the blood has evidenced the necessity to extend studies on extraneuronal cells, particularly on erythrocytes. Aβ is also present in brain capillaries, where it interacts with the erythrocytes, inducing several metabolic and functional alterations. Recently, functionally active endothelial type nitric oxide synthase (eNOS) was discovered in human erythrocytes. The goal of the present study was to evidence the effect of Aβ on erythrocyte eNOS. We found that Aβ following to 24-h exposure causes a decrease in the immune staining of erythrocyte eNOS. Concurrently, Aβ alters erythrocyte cell morphology, decreases nitrites and nitrates levels, and affects membrane acetylcholinesterase activity. Propidium, an acetylcholinesterase inhibitor, was able to reverse the effects elicited by Aβ. These events could contribute to the vascular alterations associated with Alzheimer's disease.

β-amyloid decreases detectable endothelial nitric oxide synthase in human erythrocytes: a role for membrane acetylcholinesterase.

MISITI, Francesco;
2012-01-01

Abstract

Until few years ago, many studies of Alzheimer's disease investigated the effects of this syndrome in the central nervous system. Only recently, the detection of amyloid beta peptide (Aβ) in the blood has evidenced the necessity to extend studies on extraneuronal cells, particularly on erythrocytes. Aβ is also present in brain capillaries, where it interacts with the erythrocytes, inducing several metabolic and functional alterations. Recently, functionally active endothelial type nitric oxide synthase (eNOS) was discovered in human erythrocytes. The goal of the present study was to evidence the effect of Aβ on erythrocyte eNOS. We found that Aβ following to 24-h exposure causes a decrease in the immune staining of erythrocyte eNOS. Concurrently, Aβ alters erythrocyte cell morphology, decreases nitrites and nitrates levels, and affects membrane acetylcholinesterase activity. Propidium, an acetylcholinesterase inhibitor, was able to reverse the effects elicited by Aβ. These events could contribute to the vascular alterations associated with Alzheimer's disease.
File in questo prodotto:
File Dimensione Formato  
CBF2822.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/21721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact