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A B S T R A C T   

This paper is focused on higher-order planar kinematics and deals with the kinematic properties 
of the nth-order poles and Bresse circles intersections for a crank-driven rigid body, which belongs 
to a four-bar kinematic chain in the form of a four-bar, a slider-crank or a swinging-block 
mechanism. In particular, specific kinematic properties of nth-order Bresse circles are presented 
and proven for the first time in the form of three novel theorems, by means of the proposed 
formulation, which has been validated by significant graphical and numerical results for several 
crank-driven four-bar mechanisms in different configurations.   

1. Introduction 

The kinematic analysis of planar mechanisms can be developed by means of both graphical and analytical methods, as widely 
described in several text books [1–4]. Currently, the traditional graphical methods are applied by using two-dimensional CAD systems 
or solid modeling systems, while the analytical methods can be found in commercially available programs or specific user-written 
computer programs in a high-level language can be created. 

The kinematic analysis is usually developed up to the accelerations, but there are many practical applications where it is necessary 
to increase the order of the time-derivative of the position vector of a generic particle or rigid body point. In particular, the jerk is quite 
common for the kinematic synthesis and analysis of indexing mechanisms with cams or Geneva wheels, because the cam profile and 
the curved slots are very sensitive to the assigned motion program, which gives the maximum jerk values, as discussed in [5]. 

Other examples regard the kinematic performance of long-dwell mechanisms, which are designed by applying the dead-point 
superposition method and thus obtaining dead-points with zero jerk or jounce, as reported in [6]. Consequently, the dynamical 
performance of a mechanical system depends by the inertia forces, which are related to the accelerations, while the shock-loading 
problems are jerk dependent and sometime, even the jounce or the displacement fourth time-derivative is convenient to be consid-
ered, in order to obtain a smooth motion, without impulsive dynamic loads. 

Moreover, these kinematic and dynamic properties are also strictly related to the differential geometry and curvature theory, 
because the successive time-derivatives of a particle position vector, give in sequence, the velocity, acceleration, jerk, jounce, etc. 
vectors, which can be also decomposed in their components on the local and moving Frenet-Serret frame, as analyzed in [7–9] for the 
Euclidean 3-space. In fact, these components have more physical meaning since depending by both variations of the magnitude and 
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orientation of each kinematic vector. These properties were extended by the particle to the planar or spatial rigid body motion with the 
aid of the screw-theory in terms of twist and wrench, as proposed in [10–12]. 

The motion program is usually assigned in the form of the acceleration diagram, which can be constant, simple harmonic, cycloidal 
or polynomial, but focusing on the displacement higher-order time-derivatives, as the jerk and jounce, other more suitable motion 
programs can be defined, as reported in [13], where the case of the elliptic jerk diagram was considered to derive those of the ac-
celeration, velocity and displacement by successive integration. According to this approach, another application can be found in [14], 
where it was observed that the vibration of CNC machines decreases significantly for motions under confined jounce than those under 
confined acceleration and jerk, and in [15], where the importance of jerk analysis was investigated for the case of structural dynamics. 
A novel application regarding the analysis of the angular head jerk in augmented and virtual reality is also reported in [16]. 

In particular, the kinematic analysis of planar mechanisms that makes use of Bresse’s circles is less common, especially when they 
are computed and plotted by making use of the computer, even if, they provide a better physical understanding of the motion, along 
with its velocity and acceleration vector fields, as first proposed in [17]. In fact, these geometric loci intersect each other at both centers 
or poles of the instantaneous rotation and acceleration, which are also the centers of two corresponding vector fields, as widely 
analyzed in [18–23]. More recently, some properties of higher order instant centers and a new graphical technique for the acceleration 
analysis of four-bar mechanisms were reported in [24] and [25]. An extension of this approach to the endless tendon driven mech-
anisms was proposed in [26], while the application to the spherical case, can be found in [27,28] and other dealing with the geometric 
loci, in terms of inflection circle and centrodes, are reported in [29–31]. The synthesis of quasi-constant transmission ratio planar 
linkages was proposed in [32]. 

A first formulation based on the instantaneous geometric invariants was proposed in [33] to obtain the first and second order 
centrodes of eccentric slider-crank mechanisms. The Bresse circles were also included in the proposed algorithm, in order to validate 
the right positions of both instantaneous center of rotation and acceleration pole of the coupler link. Moreover, a pure geometrical 
approach was applied to centered slider-crank mechanisms in [34] by using the Euler-Savary equation and the Bresse and jerk circles 
were obtained. 

This paper is focused on higher-order planar kinematics and deals with the kinematic properties of the nth-order poles and Bresse 
circles intersections for a crank-driven rigid body, which belongs to a four-bar kinematic chain in the form of a four-bar, a slider-crank 
or a swinging block mechanism and thus, the previous algorithm was reformulated and extended. 

In particular, the classic Bresse circles are the loci of points with zero tangential and normal acceleration, respectively. The 
following properties are observed:  

• the circles intersect1 at velocity and acceleration poles P1 and P2;  
• the tangents to the circles at intersection points are perpendicular. 

Since the classic Bresse cicles represent the field of acceleration in a planar motion, herein it is proposed to denote them as 2nd- 
order Bresse circles. For the 3rd-order kinematic analysis one can introduce the jerk circles, as reported in [2,3,34], i.e. the loci of 
moving points with zero tangential and normal jerk. 

For these loci circles, the following properties are observed:  

• the circles intersect2 at velocity and jerk poles P1 and P3;  
• the tangents to the circles at intersection points are perpendicular. 

Due to the striking similarity of properties shared with classic Bresse circles, the jerk circles are herein named 3rd-order Bresse 
circles. 

Since the pattern is maintained also for nth-order kinematic analysis, with the term nth-order Bresse circles are herein denoted the 
loci of moving points with zero normal and tangential nth-order kinematic characteristics. Consequently, the terminology 4th-order 
Bresse circles denotes the loci of moving points with zero tangential and normal jounce. 

This paper is organized by analyzing in sequence, the nth-order poles and Bresse circles, along with their applications to a four-bar, 
an offset slider-crank and a swinging block mechanism, respectively. Consequently, specific kinematic properties of nth-order Bresse 
circles are presented and proven for the first time in the form of three novel theorems, by means of the proposed formulation, which has 
been validated by significant graphical and numerical results for several crank-driven four-bar mechanisms in different configurations. 
Moreover, the proposed algorithm allows to analyze the kinematic performance of different crank-driven four-bar mechanisms, the 
dwell configurations included, which are useful to design long-dwell mechanisms by using the dead-points superposition method, as 
first proposed in [6]. 

2. Nth-order poles: crank-driven rigid body 

A generic crank-driven rigid body in planar motion is considered by referring to the sketch of Fig. 1, where the driving crank A0A 
trasmists the motion to the point A, in terms of angular position θ2, velocity ω2, acceleration α2 and jerk β2, while the corresponding 

1 We observe that the velocity pole P1 does not belong to the zero normal acceleration or inflection circle.  
2 We observe that the velocity pole P1 does not belong to the zero-normal jerk circle. 
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angular rotation θ3, velocity ω3, acceleration α3 and jerk β3 of the coupler plane, are supposed to be assigned. 
Consequently, the position OB, velocity vB, acceleration aB and jerk JB vectors of point B of the coupler-link AB that sketches the 

coupler plane, can be determined, as follows 

OB = r2 + AB (1)  

vB = ṙ2 + ω3 × AB (2)  

aB = r̈2 + α3 × AB + ω3 × (ω3 ×AB) (3)  

JB = r...2 − ω2
3(ω3 × AB) − 3ω3α3 ⋅ AB + α̇3 × AB (4)  

where, correspondingly, for the point A and in Cartesian form with respect to the fixed frame Oxy, one have these expressions 

r2 = (r2cosθ2)i + (r2sinθ2)j (5)  

vA = ṙ2 = − (ω2r2sinθ2)i + (ω2r2cosθ2)j (6)  

aA = r̈2 =
(
− ω2

2r2cosθ2 − α2r2sinθ2
)
i+
(
− ω2

2r2sinθ2 + α2r2cosθ2
)
j (7)  

JA = r...2 =
(
− 3ω2α2r2cosθ2 −

(
α2 − ω3

2

)
r2sinθ2

)
i +
(
− 3ω2α2r2sinθ2 +

(
α̇2 − ω3

2

)
r2cosθ2

)
j (8)  

where r2 is the position vector of A and its first, second and third time derivatives are the velocity vA, acceleration aA and jerk JA 
vectors, respectively. 

In particular, the position vectors p1, p2 and p3 of the velocity, acceleration and jerk poles P1, P2 and P3 with zero -velocity, 
-acceleration and -jerk, respectively, can be determined by using the corresponding Rivals theorems, as follows 

vP1 = ṗ1 = ṙ2 + ω3 × AP1 (9)  

aP2 = p̈2 = r̈2 + α3 × AP2 + ω3 × (ω3 ×AP2) (10)  

JP3 = p...3 = r...2 − ω2
3(ω3 × AP3) − 3ω3α3 ⋅ AP3 + α̇3 × AP3 (11)  

by which, the following position vectors in Cartesian form, are obtained 

p1 =

(

−
ṙ2y

ω3
+ r2x

)

i +
(

ṙ2x

ω3
+ r2y

)

j (12) 

Fig. 1. Crank-driven rigid body in planar motion.  

G. Figliolini et al.                                                                                                                                                                                                      



Mechanism and Machine Theory 190 (2023) 105445

4

p2 =

⎛

⎝r2x −
r̈2y

α3
+

ω2
3

α3

α3 r̈2x + ω2
3 r̈2y

ω4
3 + α2

3

⎞

⎠i +

⎛

⎝r2y +
α3 r̈2x + ω2

3 r̈2y

ω4
3 + α2

3

⎞

⎠j (13)  

p3 =

⎛

⎝r2x +
3ω3α3 r...

2x
+
(
ω3

3 − β3
)

r...2y

(3ω3α3)
2
+
(
ω3

3 − β3
)2

⎞

⎠i +

⎛

⎝r2y +
r...2y

3ω3α3
−

3ω3α3 r...2x +
(
ω3

3 − β3
)

r...2y

(3ω3α3)
2
+
(
ω3

3 − β3
)2

(
ω3

3 − β3
)

3ω3α3

⎞

⎠j (14)  

as function of the angular velocity ω3, acceleration α3 and jerk β3 of the coupler plane and the Cartesian components r2x and r2y, along 
with their first, second and third time derivatives. 

The velocity and acceleration poles are usually known in planar kinematics, as the instantaneous center of rotation (ICR) and the 
accelerations center, but the word pole is here preferred, because we are dealing with the kinematic properties of higher-order. 

In general, this approach is valid for determining the position vector of the nth-order poles, since the Rivals theorem for the coupler 
plane is still valid for the higher-order kinematics. 

3. Nth-order Bresse circles: crank-driven rigid body 

Bresse circles consist of the well-known inflection and stationarity circles, which intersect at the instantaneous center of rotation 
(ICR) or velocity pole P1, and at the acceleration center P2 or acceleration pole. Conversely, jerk circles correspond to the geometric 
loci, which coupler points have zero-normal and zero-tangential acceleration, respectively. Jerk circles still intersect at the velocity 
pole and also at a third point, which is named jerk pole P3. 

In particular, the inflection circle I is the geometric locus of the coupler points, which show an inflection point in their paths and is 
always tangent to both centrodes at velocity pole P1. Thus, referring to Fig. 1 and considering a generic point M of the coupler plane, 
the equation of inflection circle I can be conveniently obtained by imposing the following condition 

vM × aM = 0 (15)  

which espresses the cross product of vectors vM and aM of point M, when it coincides with an inflection point of the coupler plane. Thus, 
developing and using the Rivals theorem, one has 

(ṙ2 +ω3 ×AM) ×
[
r̈2 +α3 ×AM+ω3 ×(ω3 ×AM)

]
= 0 (16)  

which gives the following algebraic equation 

x2 + y2 + AIx + BIy + CI = 0 (17)  

where, the coefficients AI, BI and CI are given by 

Fig. 2. Crank-driven four-bar linkage.  
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AI =
r2x
(
ω2

3ω2 − 2ω3
3 + ω2

2ω3
)
+ r2y(ω3α2 − ω2α3)

ω3
3

(18)  

BI =
r2x( − ω3α2 + ω2α3) + r2y

(
ω2

3ω2 − 2ω3
3 + ω2

2ω3
)

ω3
3

(19)  

CI =
r2x(ω2 − ω3)

[
r2x
(
ω2

2 − ω2
3

)
+ r2y(α2 + α3)

]
− r2y(ω2 − ω3)

[
r2x(α2 + α3) − r2y

(
ω2

2 − ω2
3

)]

ω3
3

(20) 

The stationarity circle S or second Bresse circle is the geometric locus of the coupler points that have a pure normal acceleration, 
which equation can be conveniently obtained as 

vM ⋅ aM = 0 (21)  

which espresses the dot product of vectors vM and aM of point M, when it coincides with a point of the coupler plane with zero- 
tangential acceleration. 

Thus, developing and using the Rivals theorem, one has 

(ṙ2 +ω3 ×AM) ⋅
[
r̈2 +α3 ×AM+ω3 ×(ω3 ×AM)

]
= 0 (22)  

which gives the following algebraic equation 

x2 + y2 + ASx + BSy + CS = 0 (23)  

where, the coefficients AS, BS and CS are given by 

AS =
r2x(ω2α3 + ω3α2 − 2ω3α3) + r2y

(
ω2ω2

3 − ω2
2ω3
)

ω3α3
(24)  

BS =
r2x
(
− ω2ω2

3 + ω2
2ω3
)
+ r2y(ω2α3 + ω3α2 − 2ω3α3)

ω3α3
(25)  

CS =
r2x(ω2 − ω3)

[
r2x(α2 − α3) − r2y

(
ω2

2 − ω2
3

)]
+ r2y(ω2 − ω3)

[
r2x
(
ω2

2 − ω2
3

)
+ r2y(α2 − α3)

]

ω3α3
(26) 

The zero-normal jerk circle J N is the geometric locus of the coupler points with the normal component of the jerk vector equal to 
zero, which means that the velocity and jerk vectors are parallel between them, by which, one has 

vM × JM = 0 (27)  

which espresses the cross product of vectors vM and JM of point M, when it coincides with a point of the coupler plane with zero-normal 
jerk. 

Thus, developing and using the Rivals theorem, one has 

(ṙ2 + ω3 × AM) ×
[

r...2 − ω2
3(ω3 × AM) − 3ω3α3 ⋅ AM + β3 × AM

]
= 0 (28)  

which gives the following algebraic equation 

x2 + y2 + AJN x + BJN y + CJN = 0 (29)  

where, the coefficients AJN , BJN and CJN are given by 

AJN =
3r2x
(
ω2ω3α2 + ω2ω3α3 − 2ω2

3α3
)
+ r2y

[
ω3

2ω3 + ω3β2 − ω3β3 + ω4
3 −

(
− ω3

3 + β3
)
(ω2 − ω3)

]

3ω2
3α3

(30)  

BJN =
r2x
[(
− ω3

3 + β3
)
(ω2 − ω3) − ω3

2ω3 − ω3β2 + ω3β3 − ω4
3

]
+ 3r2y

(
ω2ω3α2 + ω2ω3α3 − 2ω2

3α3
)

3ω2
3α3

(31)   

CJN =
r2x(ω2 − ω3)

[
3r2x(α2ω2 − α3ω3)+ r2y

(
− ω3

2 +ω3
3 +β2 − β3

)]
− r2y(ω2 − ω3)

[
r2x
(
− ω3

2 +ω3
3 +β2 − β3

)
+3r2y(α2ω2 − α3ω3)

]

3ω2
3α3

(32) 

The zero-tangential jerk circle J T is the locus of the coupler points with a tangential component of the jerk vector equal to zero, 

G. Figliolini et al.                                                                                                                                                                                                      



Mechanism and Machine Theory 190 (2023) 105445

6

which means that the velocity and jerk vectors are orthogonal between them, by which, one has 

vM ⋅ JM = 0 (33)  

which espresses the dot product of vectors vM and JM of point M, when it coincides with a point of the coupler plane with zero- 
tangential jerk. 

Thus, developing and using the Rivals theorem, one has 
(

ṙ2 + ω3 × AM
)

⋅
[

r...2 − ω2
3(ω3 × AM) − 3ω3α3 ⋅ AM + β3 × AM

]
= 0 (34)  

which gives the following algebraic equation 

x2 + y2 + AJT x + BJT y + CJT = 0 (35)  

where, the coefficients AJT , BJT and CJT are given by 

AJT =
r2x
[(

β3 − ω3
3

)
(ω2 − ω3) − ω3

2ω3 + ω3β2 − ω3β3 + ω4
3

]

ω3
(
β3 − ω3

3

) +

+
3r2y
[
− ω2ω3α2 + ω2

3α3 + ω3α3(ω2 − ω3)
]

ω3
(
β3 − ω3

3

)

(36)  

BJT =
3r2x
[
ω2ω3α2 + ω2

3α3 + ω3α3(ω2 − ω3)
]

ω3
(
β3 − ω3

3

) +

+
r2y
[(

β3 − ω3
3

)
(ω2 − ω3) − ω3

2ω3 + ω3β2 − ω3β3 + ω4
3

]

ω3
(
β3 − ω3

3

)

(37)  

CJT =
r2x(ω2 − ω3)

[
r2x
(
− ω3

2 + ω3
3 + β2 − β3

)
+ 3r2y(α2ω2 + α3ω3)

]

ω3
(
β3 − ω3

3

) +

+
r2y(ω2 − ω3)

[
3r2x(α2ω2 − α3ω3) + r2y

(
− ω3

2 + ω3
3 + β2 − β3

)]

ω3
(
β3 − ω3

3

)

(38) 

Consequently, the acceleration pole P2 is the intersection of the 1st-order Bresse circles, i.e. the inflection I and stationary S 

circles, while the jerk pole P3 is the intersection of the 2nd-order Bresse circles, i.e. the zero-normal J N and zero-tangential J T jerk 
circles, where the first intersection is located at the velocity pole P1 for both pairs of Bresse circles. In general, these properties of the 
Bresse circles are true for the nth-order Bresse circles, since they intersect each other at the nth order pole, as in the case of the fourth and 
fifth order by giving the jounce or snap and the crackle poles, respectively. 

4. Higher-order acceleration and path curvature analysis 

The field of accelerations and higher-order accelerations, such as jerk and jounce, is completely defined by means of the kinematic 
analysis methods discussed in the previous sections and based on the nth-order poles and nth-order Bresse circles. 

The previous capability allows the development of a new method to compute the radius of curvature ρe of the path trajectory 
evolute, as well as the radius of curvature ρee of the path trajectory evolute of evolute. The usefulness of ρe and ρee in many kinematic 
design tasks and also dynamic analyses of centriphugal dampers is well established [3]. Thus, the kinematic analysis methods herein 
discussed provide the basis of innovative tools. As it will be shown, once the kinematic state of a point has been characterized in terms 
of its acceleration, jerk and jounce, the higher-order differential properties of a point path can be computed. 

Pennestrì and Cera presented in [3] different geometric methods for the computation of such differential properties, as well as a 
discussion of their use in some meaningful engineering tasks. For the acceleration a of any point, it is well known that 

a = s̈τ̂ +
ṡ2

ρ n̂ (39)  

where: s is the point trajectory curvilinear abscissa; ρ is the point trajectory radius of curvature; ̂τ and n̂are the unit vectors tangent and 
normal to the point trajectory, respectively; dots denote differentiation with respect to time. 

From Eq. (39), one has 

1
ρ =

|a × τ̂ |
ṡ2 (40)  

where v = ṡτ̂ is the point velocity vector. This standard operation we will be herein extended for the analysis of higher-order path 
curvature of any point on the plane. 
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The time derivative of Eq. (39) yields the jerk vector j of a point as follows 

j =
(

s... −
ṡ3

ρ2

)

τ̂ +

(

3
ṡ s̈
ρ −

ṡ3

ρ3ρe

)

n̂ (41)  

where 

ρe = ρ dρ
ds

(42)  

is the radius of curvature of the point path evolute. 
Hence, from equation Eq. (41), one has 

ρe =

(

3
ṡ s̈
ρ ∓ |j× τ̂ |

)
ρ3

ṡ3 (43)  

where the minus (plus) sign is adopted when the product vectors j × τ̂ and n̂ × τ̂ have (do not have) the same orientation. 
The time derivative of Eq. (41) yields the jounce vector J of a point as follows 

J =

[

s⃜ −
6ṡ2 s̈ρ2 − 3ṡ4ρe

ρ4

]

τ̂ +
[

4s⃛ ṡ + 3s̈2

ρ − 6
ṡ2 s̈
ρ − 6

ṡ2 s̈
ρ3 ρe −

ṡ4

ρ3

(

1 − 3
ρ2

e

ρ2 +
ρee

ρ

)]

n̂ (44)  

where 

ρee = ρ dρe

ds
(45)  

From equation Eq. (44), the following formula can deduced 

ρee =

[(
4s⃛ ṡ + 3s̈2

ρ − 6
ṡ2 s̈
ρ − 6

ṡ2 s̈
ρ3 ρe

)

−
ṡ4

ρ3

(

1 − 3
ρ2

e

ρ2

)

∓ |J× τ̂ |
]

ρ4

ṡ4 (46)  

where the minus (plus) sign is adopted when the product vectors J × τ̂ and n̂ × τ̂ have (do not have) the same orientation. The 
proposed formulas (43) and (46) do not require the knowledge of polodes geometry, but only the kinematic state of the point. 

5. Crank-driven four-bar mechanisms 

The crank-driven rigid body of Fig. 1 can be considered as a part of a generic four-bar mechanism, such as, the four-bar linkage, the 
offset slider-crank mechanism and the swinging-block mechanism. Thus, the angular rotation θ3, velocity ω3, acceleration α3 and jerk 
β3 of the coupler link AB, can be determined as function of the kinematic input data of the driving crank, which are the angular position 
θ2, velocity ω2, acceleration α2 and jerk β2, respectively. This is also true for the higher-order kinematics. 

Therefore, applying the loop-closure equation to each of the above mentioned crank-driven mechanisms, a general algorithm is 
formulated in order to analyze the kinematic properties of nth-order Bresse circles intersections. 

5.1. Four-bar linkage 

Referring to the crank-driven four-bar linkage of Fig. 2, the loop-closure equation is 

r1 − r2 − r3 + r4 = 0 (47)  

where vectors r1, r2, r3 and r4 can be expressed in general in Oxy, as 

ri = (ricosθi)i + (risinθi)j
i = 1,…, n (48)  

and for n = 4, r2, r3 and r4 are the lengths of the crank A0A, the coupler AB and the crank or rocker B0B, respectively, while r1 is the 
length of the fixed frame A0B0. The angles θ 1, θ 2, θ 3 and θ 4 give the angular position of vectors r1, r2, r3 and r4. 

Thus, the angular position θ3 of coupler link AB is given by 

θ3 = tan− 1
(

r1sinθ1 − r2sinθ2 + r4sinθ4

r1cosθ1 − r2cosθ2 + r4cosθ4

)

(49)  

and its time derivatives, up to the third order, give the angular velocity ω3, acceleration α3 and jerk β3 vectors, as follows 

G. Figliolini et al.                                                                                                                                                                                                      



Mechanism and Machine Theory 190 (2023) 105445

8

ω3 = θ̇3 k =

(

ω2
r2

r3

sin(θ2 − θ4)

sin(θ4 − θ3)

)

k (50)  

α3 = θ̈3 k =

(
r2α2sin(θ2 − θ4) + r2ω2

2cos(θ2 − θ4) + r3ω2
3cos(θ3 − θ4) − r4ω2

4

r3 sin(θ4 − θ3)

)

k (51)  

β3 = θ
⃛
3k =

(

−
A2 + B2 tanθ4

r3(cosθ3tanθ4 − sinθ3)

)

k (52)  

where the coefficients A2 and B2 are given by 

A2 = − r2β2 sinθ2 + r2ω3
2sinθ2 + r3ω3

3sinθ3 − r4ω3
4sinθ4 − 3r2ω2α2cosθ2+

− 3r3ω3α3cosθ3 + 3r4ω4α4cosθ4
(53)  

B2 = r2β2 cosθ2 − r2ω3
2cosθ2 − r3ω3

3cosθ3 + r4ω3
4cosθ4 − 3r2ω2α2sinθ2+

− 3r3ω3α3sinθ3 + 3r4ω4α4sinθ4
(54) 

Likewise, the angular position θ4 of driven link B0B takes the form 

θ4 = tan− 1
− B1 + σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B2
1 − C2

1 + A2
1

√

C1 − A1
(55)  

where σ is equal to ±1 according to the assembly mode and its coefficients are given by 

A1 = 2r1r4cosθ1 − 2r2r4cosθ2
B1 = 2r1r4sinθ1 − 2r2r4sinθ2

(56)  

C1 = r2
1 + r2

2 + r2
4 − r2

3 − 2r1r2(cosθ1cosθ2 + sinθ1sinθ2) (57) 

The angular velocity vector ω4 is given by 

ω4 = θ̇4 k =

(
r2ω2

r4

sin(θ2 − θ3)

sin(θ4 − θ3)

)

k (58) 

Fig. 3. Offset slider-crank mechanism.  
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and the angular acceleration vector α4 takes the form 

α4 = θ̈4 k =

(
r2α2 sin(θ2 − θ3) + r2ω2

2cos(θ2 − θ3) + r3ω2
3 − r4ω2

4cos(θ4 − θ3)

r4 sin(θ4 − θ3)

)

k (59)  

5.2. Offset slider-crank mechanism 

Referring to the crank-driven offset slider-crank mechanism of Fig. 3, the angular position θ3 of the coupler link AB, is given by 

θ3 = sin− 1
(

r4 − r2sinθ2

r3

)

(60)  

and its time derivatives, up to the third order, give the angular velocity ω3, acceleration α3 and jerk β3 vectors, as follows 

ω3 = θ̇3 k =

(

−
r2 cosθ2

r3 cosθ3
ω2

)

k (61)  

α3 = θ̈3 k =

(
− α2r2cosθ2 + ω2

2r2sinθ2 + ω2
3r3sinθ3

r3cosθ3

)

k (62)  

β3 = θ
⃛
3k =

(
− β2r2cosθ2 + ω3

2r2cosθ2 + 3ω2α2r2sinθ2 + 3ω3α3r3sinθ3 + ω3
3r3cosθ3

r3cosθ3

)

k (63)  

5.3. Swinging-block mechanism 

Referring to the crank-driven swinging block mechanism of Fig. 4, the angular position θ3 of the coupler link AB, is given by 

θ3 = tan− 1
(

− r2sinθ2

s − r2cosθ2

)

(64)  

and its time derivatives, up to the third order, give the angular velocity ω3, acceleration α3 and jerk β3 vectors, as follows 

ω3 = θ̇3 k =

(

−
r2ω2

r3
(sinθ2tanθ3 + cosθ2)cosθ3

)

k (65) 

Fig. 4. Crank-driven swinging-block mechanism.  
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α3 = θ̈3k =

(
cosθ3

r3
(A3tanθ3 − B3)

)

k (66)  

β3 = θ
⃛
3k =

(
cosθ3

r3
(A4tanθ3 − B4)

)

k (67)  

where 

A3 = − r2α2sinθ2 − r2ω2
2cosθ2 − 2ṙ3ω3sinθ3 − r3ω2

3cosθ3 (68)  

B3 = r2α2cosθ2 − r2ω2
2sinθ2 + 2ṙ3ω3cosθ3 − r3ω2

3sinθ3 (69)  

A4 = − r2β2sinθ2 + r2ω3
2sinθ2 − 3r2ω2α2cosθ2 − 3ṙ3α3sinθ3 − 2ṙ3ω3sinθ3 − r̈3ω3sinθ3+

− 3ṙ3ω2
3cosθ3 + r3ω3

3sinθ3 − 3r3ω3α3cosθ3
(70)  

B4 = r2β2cosθ2 − r2ω3
2cosθ2 − 3r2ω2α2sinθ2 + 3ṙ3α3cosθ3 + 2ṙ3ω3cosθ3 + r̈3ω3cosθ3+

− 3ṙ3ω2
3sinθ3 − r3ω3

3cosθ3 − 3r3ω3α3sinθ3
(71) 

The magniture r3 of the position vector r3 of link AB can be expressed as 

r3 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s2 + r2
2 − 2sr2cosθ2

√

(72)  

and its time derivatives, up to the third order, are given by 

ṙ3 =

(
r2ω2sinθ2 + r3ω3sinθ3

cosθ3

)

(73)  

r̈3 =

(
r3α3sinθ3 − A3

cosθ3

)

(74)  

r⃛ 3 =

(
r3β3sinθ3 − A4

cosθ3

)

(75)  

Fig. 5. Crank-driven four-bar linkage: Bresse and jerk circles, along with the velocity, acceleration and jerk vectors of points A, B and pole P1, when 
θ 2 = 0◦
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6. Nth-order Bresse circles intersections: kinematic properties 

The position vector of center OI , radius rI and diameter ΔI of the inflection circle I are respectively expressed by 

OI =

(

−
AI

2

)

i +
(

−
BI

2

)

j

rI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

O2
Ix + O2

Iy − CI

√

ΔI = 2rI

(76) 

The position vector of inflection pole WI is given by 

WI = (2OIx − p1x)i +
(
2OIy − p1y

)
j (77) 

The position vector of center OJN , radius rJN and diameter ΔJN of the zero-normal jerk circle J N are respectively, expressed by 

OJN =

(

−
AJN

2

)

i +
(

−
BJN

2

)

j

rJN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

O2
JN x + O2

JN y − CJN

√

ΔJN = 2rJN

(78) 

The position vector of zero-normal jerk pole WJN is given by 

WJN = (2OJN x − p1x)i +
(
2OJN y − p1y

)
j (79) 

The magnitude of the acceleration vector aP1 is independent by the angular acceleration α3 and can be expressed by 

aP1 = ω2
3ΔI (80) 

The magnitude of the acceleration vector aWI is independent of the angular velocity ω3 and can be expressed by 

aWI = α3ΔI (81) 

Fig. 6. - Crank-driven four-bar linkage: Bresse and jerk circles, along with the velocity, acceleration and jerk vectors of points A, B and pole P1, 
when θ 2 = 18.575◦
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The magnitude of jerk vector JP1 is independent of the angular jerk β3 and can be expressed by 

JP1 = 3ω3α3ΔJN (82)  

The jerk JWJN 
of the zero-normal jerk pole WJN is independent of the angular acceleration α3 and can be expressed by 

Fig. 7. - Crank-driven four-bar linkage: Bresse and jerk circles, along with the velocity, acceleration and jerk vectors of points A, B and pole P1, 
when θ 2 = 340◦

Table 1 
– Input data for a crank-driven four-bar linkage, (Dimensions in u unit length).  

Example r1 [u] r2 [u] r3 [u] r4 [u] θ 2 [deg] ω 2 [r/s] α 2 [r/s2] β 2 [r/s3] 

Fig. 5 30 10 30 15 0 1 0 0 
Fig. 6 30 10 30 15 18.575◦ 1 0 0 
Fig. 7 20 10 30 15 340◦ 1 0 0  

Fig. 8. Offset slider-crank mechanism: Bresse and jerk circles, along with the velocity, acceleration and jerk vectors of points A, B and pole P1, when 
θ 2 = 30◦
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JWJN
=
(
ω3

3 − β3
)
ΔJN (83) 

The acceleration vector aP1 of the velocity pole P1 is parallel to WIP1 and thus, one has 

aP1 × WIP1 = 0 (84) 

The jerk vector JP1 of the jerk pole P1 is parallel to WJNP1, and thus one has 

JP1 × WJNP1 = 0 (85) 

Fig. 9. - Offset slider-crank mechanism: Bresse and jerk circles, along with the velocity, acceleration and jerk vectors of points A, B and pole P1, 
when θ 2 = 90◦

Fig. 10. - Offset slider-crank mechanism: Bresse and jerk circles, along with the velocity, acceleration and jerk vectors of points A, B and pole P1, 
when θ = 19.47◦

Table 2 
– Input data for an offset slider-crank mechanism, (Dimensions in u unit length).  

Example e [u] r [u] l [u] θ 2 [deg] ω 2 [r/s] α 2 [r/s2] β 2 [r/s3] 

Fig. 8 10 10 20 30◦ 1 0 0 
Fig. 9 20 20 40 90◦ 1 0 0 
Fig. 10 10 10 20 19.47◦ 1 0 0  
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The angle γ3 between the acceleration vector aM of a generic coupler point M with respect the joining points P2M is given by 

γ3 = tan− 1
(

α3

ω2
3

)

(86) 

The angle λ3 between the jerk vector JM of a generic coupler point M with respect the joining points P3M can be expressed by 

λ3 = tan− 1
(

ω3
3 − β3

3ω3α3

)

(87) 

Fig. 11. Swinging-block mechanism: Bresse and jerk circles, along the velocity, acceleration and jerk vectors of points A, B and pole P1, when θ 2 
= 15◦

Fig. 12. Swinging-block mechanism: Bresse and jerk circles, along the velocity, acceleration and jerk vectors of points A, B and pole P1, when θ 2 
= 235◦
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The magnitude of the acceleration vector aM of a generic coupler point M is 

aM = P2M
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω4
3 + α2

3

√

(88) 

The magnitude of the jerk vector JM of a generic coupler point M can be expressed by 

JM = P3M
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ω3
3 − β3)

2
+ (3ω3α3)

2
√

(89)  

Since the acceleration vector aWI of the inflection pole WI is orthogonal to the acceleration vector aP1 of the velocity pole P1, one has: 

aP1 ⋅ aWI = 0 (90)  

Thus, the acceleration vector aP1 is tangent to the stationarity circle S , while the acceleration vector aWI is tangent to the inflection 
circle I . 

The jerk vector JWJN
of the zero-normal jerk pole WJN is orthogonal to the jerk vector JP1 of the velocity pole P1, and thus, one has 

JP1 ⋅ JWJN
= 0 (91)  

and thus, the jerk vector JP1 is tangent to zero-tangential jerk circle J T , while the jerk vector JWJN 
is tangent to the zero-normal jerk 

circle J N . 
The Inflection circle I and stationarity circle S are orthogonal, and thus 

OIP1
2
+ OSP1

2
= OIOS

2 (92) 

The zero-normal jerk circle J N and zero-tangential jerk circle J T are orthogonal, and thus 

OJNP1
2
+ OJT P1

2
= OJNOJT

2 (93) 

The results of previous analysis allow to establish by induction the following theorems: 

Fig. 13. Swinging-block mechanism: Bresse and jerk circles, along the velocity, acceleration and jerk vectors of points A, B and pole P1, when θ 2 
= 125◦

Table 3 
– Input data for a swinging-block mechanism, (Dimensions in u unit length).  

Example r1 [u] r2 [u] θ 2 [deg] ω 2 [r/s] α 2 [r/s2] β 2 [r/s3] 

Fig. 11 20 10 15◦ 0.8 0 0 
Fig. 12 25 15 235◦ 1.7 0 0 
Fig. 13 20 10 125◦ 1.1 0.4 0  

G. Figliolini et al.                                                                                                                                                                                                      



Mechanism and Machine Theory 190 (2023) 105445

16

Theorem 1. For a general planar motion, the loci of moving points with nth-order (n = 2,3,…) zero tangential and normal kinematic 
properties are orthogonally intersecting circles at pole velocity P1 and nth-order pole Pn. These circles are the nth-order Bresse circles. 

Theorem 2. The nth-order kinematic property of pole velocity P1 is independent of the angular nth- order derivative and is always directed 
toward the pole, opposite to P1, on the zero normal nth-order Bresse circle. 

Theorem 3. The nth-order kinematic property of the pole opposite to P1, on the zero normal nth-order Bresse circle, is independent of the 
angular (n − 1)th- order derivative. 

7. Numerical examples 

The Figs. 5–7 show the numerical and graphical results of a four-bar mechanism when the driving crank angle θ 2 = 0◦, θ 2 =

18.575◦and θ 2 = 340◦, respectively, along with the coupler curves, the velocity, acceleration and jerk vectors of points A, B and poles 
P1, P2 and P3. The input data for the four-bar mechanism of Fig. 2 are reported in Table 1. 

Figs. 8–10 show the numerical and graphical results of a slider-crank mechanism for the driving crank angle θ 2 = 30◦, θ 2 = 90◦ and 
θ2 = sin− 1( e

r+l
)
=19.47◦, respectively, along with the coupler curves, the velocity, acceleration and jerk vectors of points A, B and poles 

P1, P2 and P3. The input data for the slider-crank mechanism of Fig. 3 are reported in Table 2. 
The Figs. 11–13 show the numerical and graphical results of a swinging-block mechanism for the driving crank angle θ 2 = 15◦, θ 2 

= 235◦ and θ 2 = 125◦, respectively, along with the coupler curves, the velocity, acceleration and jerk vectors of points A, B and poles 
P1, P2 and P3. The input data for the swinging block mechanism of Fig. 4 are reported in Table 3. 

8. Conclusions 

The kinematic properties of the nth-order poles and Bresse circles intersections for a crank-driven rigid body, which belongs to a 
four-bar kinematic chain in the form of four-bar, slider-crank and swinging-block mechanisms, have been presented and proven by 
means of significant graphical and numerical results for different crank-driven four-bar mechanisms. 

Moreover, three novel theorems dealing with the nth-order Bresse circles, which are orthogonally intersecting circles at pole ve-
locity and nth-order pole, and the nth-order time-derivative position vectors of the velocity pole and its opposite point laying on the 
zero-normal nth-order Bresse circle, which is the inflection pole in the case of the zero-normal 2nd-order Bresse circle or inflection 
circle, have been formulated for the first time. 

In particular, the first of these vectors is always oriented along the diameter of the zero-normal nth-order Bresse circle and has a 
magnitude that is independent of the angular nth-order derivative, while the second vector is always tangent to the same Bresse circle 
and has a magnitude that is independent of the angular (n − 1)th-order derivative. 
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[7] K.E. Özen, F.S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, J. Theoret. Appl. Mech. 57 (2) (2019) 

435–444. 
[8] E. Hamouda, C. Cesarano, S. Askar, A. Elsharkawy, Resolutions of the jerk and snap vectors for a quasi curve in Euclidean 3-Space, Mathematics 9 (2021), 3128- 

16. 
[9] A.M. Elshenhab, O. Moaaz, I. Dassios, A. Elsharkawy, Motion along a space curve with a quasi-frame in Euclidean 3-Space: acceleration and jerk, Symmetry 

(Basel) 14 (8) (2022) 1610–1615. 
[10] J. Gallardo-Alvarado, J.M. Rico-Martinez, Jerk influence coefficients, via screw-theory, of closed chains, Meccanica 26 (2) (2001) 213–228. 
[11] D. Condurache, Higher-order acceleration center and vector invariants of rigid body motion, in: Proc. of the 5th Joint Int. Conference on Multibody System 

Dynamics, Lisbon, Portugal, 2018. June 24-28paper n.160. 
[12] D. Condurache, Higher-order kinematics of rigid bodies. A tensors algebra approach. Kecskeméthy A., Geu Flores F., Carrera E., Elias D. (eds), Interdisciplinary 
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